
keyestudio WiKi

keyestudio WiKi

Dec 06, 2023

KEYESTUDIO DOCS

1 1. Description 3

2 2. Kit list 5

3 3. Tutorials 13

4 ESP32 Mainboard and ESP32 shield 15
4.1 1. Keyestudio ESP32 Mainboard . 15
4.2 2. Keyestudio ESP32-IO shield . 19

5 Python tutorial 21
5.1 1. Preparation for Python(Windows): . 21
5.2 2. Single Sensor/Experiment Projects . 57
5.3 3. Comprehensive Experiments: . 205

6 Arduino tutorial 283
6.1 1. Get started with Arduino C: . 283
6.2 2. Basic Projects . 324
6.3 3. Comprehensive Experiments: . 481

7 Arduino(Raspberry-Pi) tutorial 571
7.1 1. Install Raspberry Pi OS System . 571
7.2 2. Preparations for C language: . 612
7.3 3. Linux SystemRaspberry Pi: . 617
7.4 4. How to Add Libraries? : . 634
7.5 5. Basic Projects . 641
7.6 6. Comprehensive Projects: . 795

i

ii

keyestudio WiKi

KEYESTUDIO DOCS 1

keyestudio WiKi

2 KEYESTUDIO DOCS

CHAPTER

ONE

1. DESCRIPTION

The Keyestudio ESP32 42 in 1 sensor kit mainly contains 42 commonly usedsensors/modules, a ESP32 board, a ESP32
expansion board and Dupontwires.

The 42 sensors and modules are fully compatible with the ESP32 ExpansionBoard. You only need to stack the ESP32
mainboard onto the ESP32 Expansion Board, and hook up them with Dupont wires, which is simple and convenient.

To make you master the electronic knowledge, detailed tutorials (Micropython), schematic diagrams, wiring methods
and test code are included. Through these projects, you will have a better understanding about programming, logic and
electronics.

3

keyestudio WiKi

4 Chapter 1. 1. Description

CHAPTER

TWO

2. KIT LIST

(Note: KS5003 kit include ESP32 mainboardKS5004 kit does‘t include ESP32 mainboard.)

Picture Name QTY

1 keyestudio LED Module 1

2 Keyestudio Common Cathode RGB Module 1

3 Keyestudio Traffic Lights Module 1

4 Keyestudio Active Buzzer 1

5 Keyestudio 8002b Audio Power Amplifier 1
continues on next page

5

keyestudio WiKi

Table 1 – continued from previous page
Picture Name QTY

6 Keyestudio Button Module 1

7 Keyestudio Tilt Sensor 1

8 Keyestudio PIR Motion Sensor 1

9 Keyestudio Obstacle Avoidance Sensor 1

10 Keyestudio 6812 RGB Module 1

11 Keyestudio NTC-MF52AT Thermistor 1

12 Keyestudio Photoresistor 1
continues on next page

6 Chapter 2. 2. Kit list

keyestudio WiKi

Table 1 – continued from previous page
Picture Name QTY

13 Keyestudio Sound Sensor 1

14 KeyestudioRotary Potentiometer 1

15 Keyestudio IR Receiver 1

16 Keyestudio Reed Switch Sensor 1

17 Keyestudio Rotary Encoder Module 1

18 Keyestudio Joystick Module 1

19 Keyestudio HT16K33 8X8 Dot Matrix Module 1

20 Keyestudio TM1650 4-Digit Tube Display 1
continues on next page

7

keyestudio WiKi

Table 1 – continued from previous page
Picture Name QTY

21 Keyestudio Thin-film Pressure Sensor 1

22 Keyestudio DS1307 Clock Sensor 1

23 Keyestudio SR01 Ultrasonic Sensor 1

24 Servo 1

25 Keyestudio Capacitive Sensor 1

26 Keyestudio Photo Interrupter 1

27 Keyestudio Hall Sensor 1

28 Keyestudio Flame Sensor 1
continues on next page

8 Chapter 2. 2. Kit list

keyestudio WiKi

Table 1 – continued from previous page
Picture Name QTY

29 Keyestudio Line Tracking Sensor 1

30 Keyestudio Analog Gas Sensor 1

31 Temperature and Humidity Sensor 1

32 Keyestudio 18B20 Temperature Sensor 1

33 keyestudio 130 Motor 1

34 Fan 1

35 Keyestudio Laser Module 1
continues on next page

9

keyestudio WiKi

Table 1 – continued from previous page
Picture Name QTY

36 Keyestudio Steam Sensor 1

37 Keyestudio Relay Module 1

38 Keyestudio RFID Module 1

39 Keyestudio Collision Sensor 1

40 Keyestudio Alcohol Sensor 1

41 Kyestudio LCD_128X32_DOT Module 1

42 5-Channel AD Button Module 1

43 DXL345 Acceleration Module 1

44 Keyestudio ESP32 Development Board 1
continues on next page

10 Chapter 2. 2. Kit list

keyestudio WiKi

Table 1 – continued from previous page
Picture Name QTY

45 Keyestudio ESP32-IO Expansion Board 1

46 Keyestudio IR Remote Control 1

47 USB Cable 1

48 F-F Dupont Wire 1

49 White Card 1

50 ABS RFID Key 1

51 Battery Holder 1

11

keyestudio WiKi

12 Chapter 2. 2. Kit list

CHAPTER

THREE

3. TUTORIALS

• 1.ESP32_Mainboard_and_ESP32_Expansion_Board

• 2.Python_Tutorial(Windows)

• 3.Arduino_C_Tutorial(Windows)

• 4.Arduino_C_Tutorial(Raspberry-Pi)

• 5.Libraries_Driver_Firmware_and_APP

• 6.Codes

13

keyestudio WiKi

14 Chapter 3. 3. Tutorials

CHAPTER

FOUR

ESP32 MAINBOARD AND ESP32 SHIELD

4.1 1. Keyestudio ESP32 Mainboard

4.1.1 1.1. Introduction:

Keyestudio ESP32 Core board is a Mini development board based on the ESP-WROOM-32 module. The board has
brought out most I/O ports to pin headers of 2.54mm pitch. These provide an easy way of connecting peripherals
according to your own needs.

When it comes to developing and debugging with the development board, the both side standard pin headers can make
your operation more simple and handy.

The ESP-WROOM-32 module is the industry’s leading integrated WiFi + Bluetooth solution with less than 10 external
components. It integrates antenna switches, RF balun, power amplifiers, low noise amplifiers, filters as well as power
management modules. At the same time, it also integrates TSMC’s low-power 40nm technology, power performance
and rf performance, making it safe, reliable and easy to expand to a variety of applications.

15

keyestudio WiKi

4.1.2 1.2. Specifications:

• Microcontroller: ESP-WROOM-32Module

• USB to Serial Port Chip: CP2102-GMR

• Working Voltage: DC 5V

• Working Current80mAAverage

• Current Supply500mAMinimum

• Working Temperature Range: -40°C ~ +85°C

• WiFi ModeStation/SoftAP/SoftAP+Station/P2P

• WiFi Protocol802.11 b/g/n/e/i802.11nSpeed up to 150 Mbps

• WiFi Frequency Range2.4 GHz ~ 2.5 GHz

• Bluetooth Protocolconform to Bluetooth v4.2 BR/EDR and BLE Standard

• Dimensions55×26×13mm

• Weight9.3g

4.1.3 1.3. Pin out:

ESP32 has fewer pins than commonly used processors, but it doesn’t have any problems reusing multiple functions on
pins.

16 Chapter 4. ESP32 Mainboard and ESP32 shield

keyestudio WiKi

Warning: The pin voltage level of the ESP32 is 3.3V. If you want to connect the ESP32 to another device with an
operating voltage of 5V, you should use a level converter to convert the voltage level.

Power Pins: The module has two power pins +5V and 3.3V. You can use these two pins to power other devices and
modules.

GND PinsThe module has three grounded pins.

Enable pin (EN): This pin is used to enable and disable modules. The pin enables module at high level and disables
module at low level.

Input/Output pins (GPIO): You can use 32 GPIO pins to communicate with LEDs, switches and other input/output
devices. You can also pull these pins up or down internally.

Note: GPIO6 to GPIO11 pins (SCK/CLK, SDO/SD0, SDI/SD1, SHD/SD2, SWP/SD3 and SCS/CMD pins) are used
for SPI communication for the internal module, which are not recommended.

ADC: You can use the 16 ADC pins on this module to convert analog voltages (the output of some sensors) into digital
voltages. Some of these converters are connected to internal amplifiers and are capable of measuring small voltages
with high accuracy.

DAC: ESP32 module has two A/D converters with 8-bit precision.

Touch pad: The ESP32 module has 10 pins that are sensitive to capacitance changes. You can attach these pins to
certain pads (pads on a PCB) and use them as touch switches.

SPI: There are two SPI interfaces on the module, which can be used to connect the display screen, SD/microSD
memory card module as well as external flash memory, etc.

4.1. 1. Keyestudio ESP32 Mainboard 17

keyestudio WiKi

I2C: SDA and SCL pins are used for I2C communication.

Serial Communication (UART): There are two UART serial interfaces on this module, which can be used to transfer
up to 5Mbps of information between two devices. The UART0 also has CTS and RTS control functions.

PWM: Almost all ESP32 input/output pins can be used for PWM (pulse-width modulation). Using these pins can
control the motor, LED lights and colors, etc.

4.1.4 1.4. Components:

18 Chapter 4. ESP32 Mainboard and ESP32 shield

keyestudio WiKi

4.2 2. Keyestudio ESP32-IO shield

4.2.1 2.1. Overview:

Keyestudio ESP32-IO Expansion Board is designed to be compatible with the Keyestudio ESP32 Core Board (KS0413),
which leads all pin connections of the ESP32 Core Board using a row of pins spaced 2.54mm apart. To facilitate the
connection of other sensors, it also has two rows of pins with a spacing of 2.54mm rows, which are used to supply 3.3V
DC power for external sensors/modules.

A power supply circuit is designed on the control board as it seeks to power the Keyestudio ESP32 Core Board easily.
You only need to input DC 6-9V voltage on the black DC head to power it. In addition, it also has a DIP switch to
control the power switch.

4.2. 2. Keyestudio ESP32-IO shield 19

keyestudio WiKi

4.2.2 2.2. Specifications:

• Voltage SupplyDC 6-9V

• Operating Current60mA

• Maximum Power0.3W

• Working Temperature-25℃ to +65℃

• Dimensions30mm*20mm

• Environmental Protection AttributesROHS

4.2.3 2.3. Pins and Components:

20 Chapter 4. ESP32 Mainboard and ESP32 shield

CHAPTER

FIVE

PYTHON TUTORIAL

5.1 1. Preparation for Python(Windows):

5.1.1 1. Download and Install Thonny

Thonny is a free and open source software platform with small size, simple interface, simple operation and rich func-
tions. It is a Python IDE suitable for beginners. In this tutorial, we use this IDE to develop a ESP32. Thonny supports
multiple operating systems including Windows, Mac OS, Linux.

1.1. Download Thonny

1). Enter the websitehttps://thonny.org to download the latest version of Thonny.

2). Thonny open-source code libraryhttps://github.com/thonny/thonny.

21

https://thonny.org
https://github.com/thonny/thonny

keyestudio WiKi

1.2. Install Thonny (Windows System):

1). The downloaded Thonny icon is as follows:

2). Double-click“thonny-3.3.13.exe”and select install mode. You can choose

22 Chapter 5. Python tutorial

keyestudio WiKi

3). You can also keep selecting Next to finish install.

5.1. 1. Preparation for Python(Windows): 23

keyestudio WiKi

4). If you want to change the route of installing Thonnyjust click“Browse. . .”to select a new route and click OK.

24 Chapter 5. Python tutorial

keyestudio WiKi

5). Click Create desktop icon, you will view Thonny on your desktop.

6). Click“Install”

5.1. 1. Preparation for Python(Windows): 25

keyestudio WiKi

7). Wait for a while but don’t click Cancel

8). Click “Finish”

26 Chapter 5. Python tutorial

keyestudio WiKi

1.3. Basic Setting

Double-click Thonny, choose lanuage and initial settings and click Let’s go

5.1. 1. Preparation for Python(Windows): 27

keyestudio WiKi

Click“View”→“File”and“Shell”

28 Chapter 5. Python tutorial

keyestudio WiKi

5.1. 1. Preparation for Python(Windows): 29

keyestudio WiKi

5.1.2 2. Install the CP2102 driver

Before using the Thonny, we need to install the CP2102 driver in the computer.

Windows system
Check if the CP2102 driver has been installed.

1). Interface the ESP32 with your PC with a USB cable.

2). Click “This PC” and right-click “Manage”.

30 Chapter 5. Python tutorial

keyestudio WiKi

3). Click “Device Manager” , if the CP2102driver has been installed“Silicon Labs CP210x USB to UART
Bridge(COMx)” will be shown.

If the CP2102 has not been installed.

5.1. 1. Preparation for Python(Windows): 31

keyestudio WiKi

Click “CP2102USB to UART Bridge Controller” and “Update driver”.

32 Chapter 5. Python tutorial

keyestudio WiKi

Click “Browse my computer for drivers”.

5.1. 1. Preparation for Python(Windows): 33

keyestudio WiKi

Click “Browse. . . to” choose “CP2102 Driver File-Windows” and click “Next”.

The CP2102 driver will be installed.

34 Chapter 5. Python tutorial

keyestudio WiKi

5.1. 1. Preparation for Python(Windows): 35

keyestudio WiKi

5.1.3 3. Burn Micropython firmware:

To run a Python program on the ESP32 board, we need to burn the firmware to the ESP32 board first.

Download Micropython firmware microPython websitehttp://micropython.org/

ESP32 firmwarehttps://micropython.org/download/esp32/

The firmware we useesp32-20210902-v1.17.bin
Download firmwarehttps://micropython.org/resources/firmware/esp32-20210902-v1.17.bin

Wo also offer the Firmware“. . . \Python_Firmware”.

36 Chapter 5. Python tutorial

http://micropython.org/
https://micropython.org/download/esp32/
https://micropython.org/resources/firmware/esp32-20210902-v1.17.bin

keyestudio WiKi

Burn the Micropython firmware
Connect the ESP32 to your PC with a USB cable

Make sure the driver has been installed successfully and the COM port can be identified correctly. Open Device
Manager and expand “Ports”.

Open Thonnyclick“run”and“Select interpreter. . . ”

5.1. 1. Preparation for Python(Windows): 37

keyestudio WiKi

Select “Micropython (ESP32)” and “Silicon Labs CP210x USB to UART Bridge(COM3)” and click “Install or update
firmware”.

38 Chapter 5. Python tutorial

keyestudio WiKi

Select“Silicon Labs CP210x USB to UART Bridge(COM3)”click “ Browse. . . ”and choose the firmware esp32-
20210902-v1.17.bin. Check“Erase flash before installing”and“Flash mode”then click“Install”.Noteif you fail to install
the firmwarepress the Boot button on the ESP32 board and click“Install”

5.1. 1. Preparation for Python(Windows): 39

keyestudio WiKi

40 Chapter 5. Python tutorial

keyestudio WiKi

Then click “Close” and “OK”.

NoteDuring installation, you can press and hold the Boot button on the ESP32 mainboard. When the upload progress
percentage appears, release the button for a while to complete the installation.

5.1. 1. Preparation for Python(Windows): 41

keyestudio WiKi

42 Chapter 5. Python tutorial

keyestudio WiKi

5.1. 1. Preparation for Python(Windows): 43

keyestudio WiKi

Turn off all windows and turn to the main page and click “STOP”.

44 Chapter 5. Python tutorial

keyestudio WiKi

5.1.4 4. Test Code:

Test the Shell commander
Input print(‘hello world’) in the“Shell”and press “Enter”.

Run the test code(online):

Connect the ESP32 to your PC. Users can program and debug programs with Thonny.

Open Thonny and click “Open”.

5.1. 1. Preparation for Python(Windows): 45

keyestudio WiKi

When a new window pops up, click “This computer”.

46 Chapter 5. Python tutorial

keyestudio WiKi

Select the file “lesson_01_HelloWorld.py”.

Click ,“Hello World”will be printed in the “Shell” monitor.

Note: Press the reset button to reboot

Run the test code(offline):

After rebooting the ESP32, run the boot.py file under the root directory first then run your code file.

So, we need to add a guide program to run the code of users.

Move the file “ESP32_code_MicroPython(Windows)” to the disk(D)the route is
“D:/ESP32_code_MicroPython(Windows)”.

5.1. 1. Preparation for Python(Windows): 47

keyestudio WiKi

Click lesson 00. Boot and double-click boot.py, then the code under MicroPython device can run offline.

If you want to run the code offline, you nee to upload boot.py and program code to MicroPython device, then press
the ESP32’s reset button. We will take the lesson 00 and lesson 01 as an example. Select “boot.py” and right-click
“Upload to/”.

48 Chapter 5. Python tutorial

keyestudio WiKi

5.1. 1. Preparation for Python(Windows): 49

keyestudio WiKi

Similarly, upload the lesson 01.HelloWorld.py file to the “MicroPython device”.

Press the Reset button, you will view code running in the “Shell” monitor.

50 Chapter 5. Python tutorial

keyestudio WiKi

5.1.5 5. Thonny Common Operation:

Upload the code to the ESP32
We take the boot.py as an example. If we add a “boot.py” in each code directory, reboot the ESP32, the boot.py will
run first.

5.1. 1. Preparation for Python(Windows): 51

keyestudio WiKi

Select “boot.py”in the file lesson 02. LED, right-click to select“Upload to /”. Then the code will be uploaded to the
root directory of the ESP32 and click “OK”.

Download the code to your PC
MicroPython device “boot.py”, then right-click “Download to. . .”.

52 Chapter 5. Python tutorial

keyestudio WiKi

Delete files of the ESP32
For example, click “boot.py” in the MicroPython device and right-click “Delete”.

Select “boot.py” in the lesson 02. LED folder, right-click “Move to Recycle Bin” to delete it.

5.1. 1. Preparation for Python(Windows): 53

keyestudio WiKi

Create and save code
Click “File” → “New” to create and edit code.

54 Chapter 5. Python tutorial

keyestudio WiKi

Enter the code in the new file. We take the lesson 02. LED.py as an example.

5.1. 1. Preparation for Python(Windows): 55

keyestudio WiKi

Click to save the code to your PC or the ESP32.

Select MicroPython device and enter main.py in the new page and click “OK”.

Then the code will be uploaded to the ESP32.

56 Chapter 5. Python tutorial

keyestudio WiKi

Disconnect the USB cable and connect it, you can see the effect of the LED flashing continuously in the circuit on a
cycle.

5.2 2. Single Sensor/Experiment Projects

When we get the kit, we can see that there are 42 sensors/modules in the kit, which contain the corresponding ESP32
mainboard, ESP32 Expansion Board and wirings. Here, we will connect the 42 sensors individually to the ESP32
mainboard and the ESP32 Expansion Board using a wiring. Then run the corresponding test code to test the function
of each sensor separately. Our next lesson is to study the principles of individual modules/sensors from simple to
complex as well as some extended applications of sensors to consolidate and deepen our understanding of the kits.

Note : When connecting the module/sensor wirings in the experiment, the wiring method and position must be fol-
lowed in the document. What’s more, do not misconnect the power supply and signal pin, otherwise there may be no

5.2. 2. Single Sensor/Experiment Projects 57

keyestudio WiKi

experimental results or damage to the modules/sensors.

5.2.1 Project 1: Hello World

Overview
For ESP32 beginners, we will start with some simple things. In this project, you only need a ESP32 mainboard, a USB
cable and a computer to complete the “Hello World!” project, which is a test of communication between the ESP32
mainboard and the computer as well as a primary project.

Components

Wiring Diagram
In this project, we will use a USB cable to connect the ESP32 to a computer.

Running code online
To run the ESP32 online, you need to connect the ESP32 to the computer, which allows you to compile or debug
programs using Thonny software.

Advantages:

1). You can use the Thonny software to compile or debug programs.

2).Through the “Shell” window, you can view error messages and output results generated during the running of the
program as well as query related function information online to help improve the program.

Disadvantages:

1). To run the ESP32 online, you must connect the ESP32 to a computer and run it with the Thonny software.

2). If the ESP32 is disconnected from the computer , when they reconnect, the program won’t run again.

Basic Operation:

1). Open Thonny and click“Open. . . ”.

58 Chapter 5. Python tutorial

keyestudio WiKi

2). Click“This computer”in the new pop-up window.

3). In the new dialog boxselect“Project_01_HelloWorld.py”,click“Open”. The code used in this tutorial is saved in the
file “. . . \6.Codes\ESP32_Python_code(Windows)”. You can move the code to anywhere. for example, we can save
the file “ESP32_Python_code(Windows)” in the Disk(D), the route is D:\ESP32_Python_code(Windows).

5.2. 2. Single Sensor/Experiment Projects 59

keyestudio WiKi

3). Click “Run current script”to execute the program“Hello World!”, “Welcome Keyestudio” , which will be printed
in the“Shell”window.

60 Chapter 5. Python tutorial

keyestudio WiKi

Exit running online

When running online, click “Stop /Restart Backend”or press “Ctrl+C”on the Thonny to exit the program.

Test Code

print("Hello World!")
print("Welcome Keyestudio")

5.2. 2. Single Sensor/Experiment Projects 61

keyestudio WiKi

5.2.2 Project 2: Lighting up LED

Overview
In this kit, we have a Keyestudio Purple Module, which is very simple to control. If you want to light up the LED, you
just need to make a certain voltage across it.

In the project, we will control the high and low level of the signal end S through programming, so as to control the
LED on and off.

Working Principle
The two circuit diagrams are given.

The left one is wrong wiring-up diagram. Why? Theoretically, when the S terminal outputs high levels, the LED will
receive the voltage and light up.

Due to limitation of IO ports of ESP32 board, weak current can’t make LED brighten.

The right one is correct wiring-up diagram. GND and VCC are powered up. When the S terminal is a high level, the
triode Q1 will be connected and LED will light up(note: current passes through LED and R3 to reach GND by VCC
not IO ports). Conversely, when the S terminal is a low level, the triode Q1 will be disconnected and LED will go off.

62 Chapter 5. Python tutorial

keyestudio WiKi

Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio Purple LED
Module*1

3P Dupont
Wire*1

MicroUSB Ca-
ble*1

Wiring Diagram

Test Code

from machine import Pin
import time

(continues on next page)

5.2. 2. Single Sensor/Experiment Projects 63

keyestudio WiKi

(continued from previous page)

led = Pin(0, Pin.OUT)# Build an LED object, connect the external LED light to pin 0, and␣
→˓set pin 0 to output mode
while True:

led.value(1)# turn on led
time.sleep(1)# delay 1s
led.value(0)# turn off led
time.sleep(1)# delay 1s

Code Explanation
Machine module is indispensable, we use import machine or from machine import. . . to program ESP32 with
microPython.

time.sleep() function is used to set delayed time, as time.sleep(0.01), which means, the delayed time is 10ms.

led = Pin(0, Pin.OUT)created a pin example and we name led.
0 is indicative of connected pin GP0Pin.OUT represents output mode can use .value() to output high levels (3.3V)
led.value(1) or low levels (0V) led.value(0).
while True is loop function
It means that sentences under this function will loop unless True changes into False. For the function
whileled.value(1), outputs high levels to the pin 0; then LED lights up. Then the delayed function time.sleep(1)
will wait for 1s. When led.value(0) output low levels to the pin 0, the LED will go offand the function time.sleep(1)
will wait for 1s, cyclically, and LED will flash.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code

starts executing, we will see that the LED in the circuit will flash alternately. Press “Ctrl+C”or click “Stop/Restart
backend”to exit the program.

5.2.3 Project 3: Traffic Lights Module

64 Chapter 5. Python tutorial

keyestudio WiKi

Overview
In this lesson, we will learn how to control multiple LED lights and simulate the operation of traffic lights.

Traffic lights are signal devices positioned at road intersections, pedestrian crossings, and other locations to control
flows of traffic.

In this kit, we will use the traffic light module to simulate the traffic light.

Working Principle
In previous lesson, we already know how to control an LED. In this part, we only need to control three separated LEDs.
Input high levels to the signal R(3.3V), then the red LED will be on.

Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY Traffic Lights
Module*1

5P Dupont
Wire*1

Micro USB Ca-
ble*1

Wiring Diagram

5.2. 2. Single Sensor/Experiment Projects 65

keyestudio WiKi

Test Code

import machine
import time

led_red = machine.Pin(15, machine.Pin.OUT)
led_yellow = machine.Pin(2, machine.Pin.OUT)
led_green = machine.Pin(0, machine.Pin.OUT)

while True:
led_green.value(1) # green light turn on
time.sleep(5) # delay 5s
led_green.value(0) # green light turn off
for i in range(3): # yellow light blinks 3 times

led_yellow.value(1)
time.sleep(0.5)
led_yellow.value(0)
time.sleep(0.5)

led_red.value(1) # red light turn on
time.sleep(5) # delay 5s
led_red.value(0) #red light turn off

Code Explanation
Create pins, set pins mode and delayed functions.

We use the for loop.

The simplest form is for i in range().
In the code, we used range(3), which means the variable i starts from 0, increase 1 for each time, to 2.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing, we will see that the green LED will be on for 5s then off, the yellow LED will flash for 3s then go off

and the red one will be on for 5s then off. Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

66 Chapter 5. Python tutorial

keyestudio WiKi

5.2.4 Project 4: Laser Sensor

Description
Lasers are widely used to cut, weld, surface treat, and more on specific materials. The energy of the laser is very high.
The toy laser pointer may cause glare to the human eye, and it may cause retinal damage for a long time. my country
also prohibits the use of laser to illuminate the aircraft.

Working Principle
The laser head sensor module is mainly composed of a laser head with a light-emitting die, a condenser lens, and a
copper adjustable sleeve.

We can see the circuit schematic diagram of this module which is very similar to the LED we have learned. They are
all driven by triodes. A high-level digital signal is directly input at the signal end, then the sensor will start to work; if
inputting low levels, the sensor won’t work.

Note: don’t point an laser emitter at eyes of people.

5.2. 2. Single Sensor/Experiment Projects 67

keyestudio WiKi

Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY Laser Mod-
ule*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

68 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

from machine import Pin
import time

laser = Pin(0, Pin.OUT)# Build a laser object, connect the laser to pin 0, and set pin 0␣
→˓to output mode
while True:

laser.value(1) # Turn on the laser
time.sleep(2) # dalay 2s
laser.value(0) # Turn off the laser
time.sleep(2) # delay 2s

Code Explanation
Please refer to project 2 above for the code setting instructions.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing, we will see that the laser tube on the module emits a red laser signal for 2 seconds, and stops emitting

a red laser signal for 2 seconds. Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2. 2. Single Sensor/Experiment Projects 69

keyestudio WiKi

5.2.5 Project 5: Breathing LED

Overview
A“breathing LED”is a phenomenon where an LED’s brightness smoothly changes from dark to bright and back to dark,
continuing to do so and giving the illusion of an LED“breathing. This phenomenon is similar to a lung breathing in
and out. So how to control LED’s brightness? We need to take advantage of PWM. Please refer to Project 6.

Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio Purple LED
Module*1

3P Dupont
Wire*1

MicroUSB Ca-
ble*1

Connection Diagram

70 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

import time
from machine import Pin,PWM

#The way that the ESP32 PWM pins output is different from traditionally controllers.
#It can change frequency and duty cycle by configuring PWM’s parameters at the␣
→˓initialization stage.
#Define GPIO 0’s output frequency as 10000Hz and its duty cycle as 0, and assign them to␣
→˓PWM.
pwm =PWM(Pin(0,Pin.OUT),10000,0)

try:
while True:

#The range of duty cycle is 0-1023, so we use the first for loop to control PWM to␣
→˓change the duty cycle value,making PWM output 0% -100%; Use the second for loop to␣
→˓make PWM output 100%-0%.

for i in range(0,1023):
pwm.duty(i)
time.sleep_ms(1)

for i in range(0,1023):
pwm.duty(1023-i)
time.sleep_ms(1)

except:
#Each time PWM is used, the hardware Timer will be turned ON to cooperate it. Therefore,␣
→˓after each use of PWM, deinit() needs to be called to turned OFF the timer. Otherwise,␣
→˓the PWM may fail to work next time.

pwm.deinit()

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing, we will see that the LED on the module gradually gets dimmer then brighter, cyclically, like human

breathe. Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2. 2. Single Sensor/Experiment Projects 71

keyestudio WiKi

5.2.6 Project 6: RGB Module

Overview
Among these modules is a RGB module. It adopts a F10-full color RGB foggy common cathode LED. We connect
the RGB module to the PWM port of MCU and the other pin to GND(for common anode RGB, the rest pin will be
connected to VCC). So what is PWM?

PWM is a means of controlling the analog output via digital means. Digital control is used to generate square waves
with different duty cycles (a signal that constantly switches between high and low levels) to control the analog output.
In general, the input voltages of ports are 0V and 5V. What if the 3V is required? Or a switch among 1V, 3V and 3.5V?
We cannot change resistors constantly. For this reason, we resort to PWM.

For Arduino digital port voltage outputs, there are only LOW and HIGH levels, which correspond to the voltage out-
puts of 0V and 5V respectively. You can define LOW as“0”and HIGH as“1’, and let the Arduino output five hun-
dred‘0’or“1”within 1 second. If output five hundred‘1’, that is 5V; if all of which is‘0’,that is 0V; if output 250 01
pattern, that is 2.5V.

This process can be likened to showing a movie. The movie we watch are not completely continuous. Actually, it
generates 25 pictures per second, which cannot be told by human eyes. Therefore, we mistake it as a continuous
process. PWM works in the same way. To output different voltages, we need to control the ratio of 0 and 1. The
more‘0’or‘1’ output per unit time, the more accurate the control.

Working Principle
For our experiment, we will control the RGB module to display different colors through three PWM values.

72 Chapter 5. Python tutorial

keyestudio WiKi

Components

ESP32
Board*1

ESP32 Expansion
Board*1

Keyestudio Common Cathode RGB
Module *1

4P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

Test Code

import Pin, PWM and Random function modules.
from machine import Pin, PWM
from random import randint
import time

#Configure ouput mode of GPIO0, GPIO2 and GPIO15 as PWM output and PWM frequency as␣
→˓10000Hz.
pins = [0, 2, 15]

(continues on next page)

5.2. 2. Single Sensor/Experiment Projects 73

keyestudio WiKi

(continued from previous page)

pwm0 = PWM(Pin(pins[0]),10000)
pwm1 = PWM(Pin(pins[1]),10000)
pwm2 = PWM(Pin(pins[2]),10000)

#define a function to set the color of RGBLED.
def setColor(r, g, b):

pwm0.duty(1023-r)
pwm1.duty(1023-g)
pwm2.duty(1023-b)

try:
while True:

red = randint(0, 1023)
green = randint(0, 1023)
blue = randint(0, 1023)
setColor(red, green, blue)
time.sleep_ms(200)

except:
pwm0.deinit()
pwm1.deinit()
pwm2.deinit()

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing, we will see that the RGB LED on the module starts to display random colors. Press “Ctrl+C”or click

“Stop/Restart backend”to exit the program.

5.2.7 Project 7: Button Sensor

74 Chapter 5. Python tutorial

keyestudio WiKi

Overview
In this kit, there is a Keyestudio single-channel button module, which mainly uses a tact switch and comes with a yellow
button cap.

In previous lessons, we learned how to make the pins of our single-chip microcomputer output a high level or low level.
In this experiment, we will read the high level (3.3V) and low level (0V).

We can determine whether the button on the sensor is pressed by reading the high and low level of the S terminal on
the sensor.

Working Principle
The button module has four pins. The pin 1 is connected to the pin 3 and the pin 2 is linked with the pin 4. When
the button is not pressed, they are disconnected. Yet, when the button is pressed, they are connected. If the button is
released, the signal end is high level.

Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY Button Mod-
ule*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

5.2. 2. Single Sensor/Experiment Projects 75

keyestudio WiKi

Test Code

from machine import Pin
import time

button = Pin(15, Pin.IN, Pin.PULL_UP)

while True:
if button.value() == 0:

print("You pressed the button!") #Press to print the corresponding information.
else:

print("You loosen the button!")
time.sleep(0.1) #delay 0.1s

Code Explanation
button = Pin(15, Pin.IN, Pin.PULL_UP), we define the pin of the button as GP15 and set to PULL-UP mode

We can use button = Pin(15, Pin.IN) to set INPUT mode, at this time, the pins are in high resistance state.

1). button.value(), read levels of buttons. Function returns High or Low

2). if. . . else. . . sentence, when the logic judge is TRUE, the code under the if will be activated; otherwise, the code
udder the else will be activated.

3). When ESP32 detects the button pressed, the signal end is low level (GP 15 is low level). button.value() is 0. If the
ESP32 detects the button unpressed, button.value() is 1 and else sentence will be activated.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing, the string will be displayed on the ”Shell“ window.

When the button is pressed, the ”Shell“ window will show“You pressed the button!”when the button is releasedthe

”Shell“ window will show “Loosen the button”; as shown below. Press “Ctrl+C”or click “Stop/Restart backend”to
exit the program.

76 Chapter 5. Python tutorial

keyestudio WiKi

5.2.8 Project 8: Capacitive Sensor

Description
In this kit, there is a capacitive touch module which mainly uses a TTP223-BA6 chip. It is a touch detection chip,
which provides a touch button, and its function is to replace the traditional button with a variable area button. When
we power on, the sensor needs about 0.5 seconds to stabilize.

Do not touch the keys during this time period. At this time, all functions are disabled, and self-calibration is always
performed. The calibration period is about 4 seconds. We display the test results in the shell.

5.2. 2. Single Sensor/Experiment Projects 77

keyestudio WiKi

Working Principle
When our fingers touch the module, the signal S outputs high levels, the red LED on the module flashes. We can
determine if the button is pressed or not by reading high and low levels on the sensor.

Required Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY Capacitive
Module*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

78 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

from machine import Pin
import time

touch = Pin(15, Pin.IN, Pin.PULL_UP)

while True:
if touch.value() == 1:

print("You pressed the button!") #Press to print the corresponding information.
else:

print("You loosen the button!")
time.sleep(0.1) #delay0.1s

Code Explanation
When we touch the sensor, the Shell monitor will show“You pressed the button!”, if not,“You loosen the button!”will
be shown on the monitor.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing, the string will be displayed in the ”Shell“ window. when the button is pressed, the red LED lights up
and val is 1. Then the shell shows“You pressed the button!”; if the button is released, the red LED is off and val is

0;“You loosen the button!”will be displayed, as shown below. Press “Ctrl+C”or click “Stop/Restart backend”to exit
the program.

5.2. 2. Single Sensor/Experiment Projects 79

keyestudio WiKi

5.2.9 Project 9: Obstacle Avoidance Sensor

Overview
In this kit, there is a Keyestudio obstacle avoidance sensor, which mainly uses an infrared emitting and a receiving tube.
In the experiment, we will determine whether there is an obstacle by reading the high and low level of the S terminal
on the sensor.

Working Principle
NE555 circuit provides IR signals with frequency to the emitter TX, then the IR signals will fade with the increase of
transmission distance. If encountering the obstacle, it will be reflected back.

When the receiver RX meets the weak signals reflected back, the receiving pin will output high levels, which indicates
the obstacle is far away. On the contrary, it the reflected signals are stronger, low levels will be output, which represents
the obstacle is close. There are two potentiometers on the module, and by adjusting the two potentiometers, we can
adjust its effective distance.

80 Chapter 5. Python tutorial

keyestudio WiKi

Components

ESP32
Board*1

ESP32 Expansion
Board*1

Keyestudio DIY Obstacle Avoid-
ance Sensor*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

5.2. 2. Single Sensor/Experiment Projects 81

keyestudio WiKi

Test Code

from machine import Pin
import time

sensor = Pin(15, Pin.IN)
while True:

if sensor.value() == 0:
print("There are obstacles")

else:
print("All going well")

time.sleep(0.1)

Code Explanation
Note:
Connect the wires according to the connection diagram. After powering on, we start to adjust the two potentiometers
to sense distance.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing, the string will be displayed in the ”Shell“ window. When the sensor detects the obstacle, sensor.value()
is 0, the shell will show “There are obstacles”, if the obstacle is not detected, sensor.value () is 1,“All going well”will
be shown, as shown below.

Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

82 Chapter 5. Python tutorial

keyestudio WiKi

5.2.10 Project 10: Line Tracking Sensor

Description
In this kit, there is a DIY electronic building block single-channel line tracking sensor which mainly uses a TCRT5000
reflective black and white line recognition sensor element.

In the experiment, we judge the color (black and white) of the object detected by the sensor by reading the high and
low levels of the S terminal on the module; and display the test results on the shell.

Working Principle

5.2. 2. Single Sensor/Experiment Projects 83

keyestudio WiKi

When a black or no object is detected, the signal terminal will output high levels; when white object is detected, the
signal terminal is low level; its detection height is 0-3cm.

We can adjust the sensitivity by rotating the potentiometer on the sensor. When the potentiometer is rotated, the
sensitivity is best when the red LED on the sensor is at the critical point between off and on.

Required Components

ESP32
Board*1

ESP32 Expansion
Board*1

Keyestudio DIY Line Tracking
Sensor*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

84 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

from machine import Pin
import time

sensor = Pin(15, Pin.IN, Pin.PULL_UP)

while True:
if sensor.value() == 0:

print("0 White") #Press to print the corresponding information.
else:

print("1 Black")
time.sleep(0.1) #delay 0.1s

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing, the string and data will be displayed in the ”Shell“ window.

When the sensor doesn’t detect an object or detects a black object, the val is 1, and the shell will display “Black” ;
when a white object (can reflect light) is detected, the val is 0, and the shell displays “White”, as shown below. Press

“Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2. 2. Single Sensor/Experiment Projects 85

keyestudio WiKi

5.2.11 Project 11: Photo Interrupter

Description
This kit contains a photo interrupter which mainly uses 1 ITR-9608 photoelectric switch. It is a photoelectric switch
optical switch sensor.

Working Principle
When the paper is put in the slot, C is connected with VCC and the signal end S of the sensor are high levels; then the
red LED will be off. Otherwise, the red LED will be on.

Required Components

86 Chapter 5. Python tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY Photo Inter-
rupter*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

Test Code

from machine import Pin
import time

sensor = Pin(15, Pin.IN, Pin.PULL_UP)
lastState = 0
PushCounter = 0

while True:
State = sensor.value()
if State != lastState:

if State == 1:
PushCounter += 1
print(PushCounter) #Press to print the corresponding information.

lastState = State

Code Explanation
Logic setting :

5.2. 2. Single Sensor/Experiment Projects 87

keyestudio WiKi

Initial Setting Set PushCounter to 0
Set State to 0 (value of the sensor)

Set lastState to 0

Condition Value Result
When an object enters the
slot

lastState is 0State turns into 1; lastState
turns into 1

Set PushCounter to PushCounter+1print
the value of PushCounter

When the object leaves
the slot

lastState is 1State becomes 0two data are
not equallastState turns into 0.

PushCounterdoesn’t change;Don’t print
the value of PushCounter

When the object goes
through this slot again

lastState is 0, State becomes 1two data are
not equallastState turns into 1.

Set PushCounter to PushCounter+1And
print the value of PushCounter

When the object leaves
this slot again

lastState is 1State turns into 0two data are
not equal lastState turns into 0

PushCounter doesn’t change;Don’t print
the PushCounter value

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing, data will be displayed in the ”Shell“ window. Every time when the object passes through the slot of the

sensor, the PushCounter data will increase by 1 continuously, as shown below. Press“Ctrl+C”or click “Stop/Restart
backend”to exit the program.

88 Chapter 5. Python tutorial

keyestudio WiKi

5.2.12 Project 12: Tilt Module

Overview
In this kit, there is a Keyestudio tilt sensor. The tilt switch can output signals of different levels according to whether
the module is tilted. There is a ball inside. When the switch is higher than the horizontal level, the switch is turned on,
and when it is lower than the horizontal level, the switch is turned off. This tilt module can be used for tilt detection,
alarm or other detection.

Working Principle
The working principle is pretty simple. When pin 1 and 2 of the ball switch P1 are connected, the signal S is low level
and the red LED will light up; when they are disconnected, the pin will be pulled up by the 4.7K R1 and make S a high
level, then LED will be off.

5.2. 2. Single Sensor/Experiment Projects 89

keyestudio WiKi

Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio Tilt Sen-
sor*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

90 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

from machine import Pin
import time

TiltSensor = Pin(15, Pin.IN)

while True:
value = TiltSensor.value()
print(value, end = " ")
if value== 0:

print("The switch is turned on")
else:

print("The switch is turned off")
time.sleep(0.1)

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing, the string and the data will be displayed in the ”Shell“ window. When the tilt module is inclined to
one side, the red LED on the module will be off and the Shell“ window will display“1. the switch is turned off.

In contrast, if you make it incline the other side, the red LED will light up and the monitor will display“0, the switch is

turned on”, as shown below. Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2. 2. Single Sensor/Experiment Projects 91

keyestudio WiKi

5.2.13 Project 13: Collision Sensor

Description
The collision sensor uses a tact switch. This sensor is often used as a limit switch in 3D printers. In the experiment, we
judge whether the sensor shrapnel is pressed down by reading the high and low levels of the S terminal on the module;
and, we display the test results in the shell.

Working Principle
It mainly uses a tact switch. When the shrapnel of the tact switch is pressed, 2 and 3 are connected, the signal terminal S
is low level, and the red LED on the module lights up; when the touch switch is not pressed, 2 and 3 are not connected,
and 3 is pulled up to a high level by the 4.7K resistor R1, that is, the sensor signal terminal S is a high level, and the
built-in red LED will be off at this time.

Components Required

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio Collision Sen-
sor*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

92 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

from machine import Pin
import time

CollisionSensor = Pin(15, Pin.IN)

while True:
value = CollisionSensor.value()
print(value, end = " ")
if value== 0:

print("The end of this!")
else:

print("All going well")
time.sleep(0.1)

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing, the string and the data will be displayed in the ”Shell“ window. When the shrapnel on the sensor is
pressed down, val is 0, the red LED of the module is on, and “The end of his!” is printed.

When the shrapnel is released, the val is 1, the red LED of the module is off, and “All going well” is printed. !”

character, as shown below. Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2. 2. Single Sensor/Experiment Projects 93

keyestudio WiKi

5.2.14 Project 14: Hall Sensor

Description
In this kit, there is a Hall sensor which mainly adopts a A3144 linear Hall element. The element P1 are composed
of a voltage regulator, a Hall voltage generator, a differential amplifier, a Schmitt trigger, a temperature compensation
circuit and an open-collector output stage. In the experiment, we will use the Hall sensor to detect the magnetic field
and display the test results on the shell.

Working Principle
When the sensor detects no magnetic field or a north pole magnetic field, the signal terminal will be high level; when
it senses a south pole magnetic field, the signal terminal will be low levels.

The stronger the magnetic field strength is, induction distance is longer.

Required Components

94 Chapter 5. Python tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY Hall Sen-
sor*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

Test Code

from machine import Pin
import time

hall = Pin(15, Pin.IN)
while True:

value = hall.value()
print(value, end = " ")
if value == 0:

print("A magnetic field")
else:

print("There is no magnetic field")
time.sleep(0.1)

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing, the string and the data will be displayed in the “Shell“ window. When the sensor detects no magnetic
fields or the north pole magnetic field, Shell will show“1 There is no magnetic field”and the LED on the sensor will be
off.

When it detects the south pole magnetic field, the Shell will show“0 A magnetic field”and the LED on the sensor will

be on, as shown below. Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2. 2. Single Sensor/Experiment Projects 95

keyestudio WiKi

5.2.15 Project 15: Reed Switch Module

Overview
In this kit, there is a Keyestudio reed switch module, which mainly uses a MKA10110 green reed component.

The reed switch is the abbreviation of the dry reed switch. It is a passive electronic switch element with contacts.

It has the advantages of simple structure, small size and easy control. Its shell is a sealed glass tube with two iron
elastic reed electric plates.

In the experiment, we will determine whether there is a magnetic field near the module by reading the high and low
level of the S terminal on the module; and, we display the test result in the shell.

Working Principle

96 Chapter 5. Python tutorial

keyestudio WiKi

In normal conditions, the glass tube in the two reeds made of special materials are separated. When a magnetic sub-
stance close to the glass tube, in the role of the magnetic field lines, the pipe within the two reeds are magnetized to
attract each other in contact, the reed will suck together, so that the junction point of the connected circuit communi-
cation.

After the disappearance of the outer magnetic reed because of their flexibility and separate, the line is disconnected.
The sensor uses this characteristic to build a circuit to convert magnetic field signal into high and low level signal.

Components

ESP32
Board*1

ESP32 Expansion
Board*1

Keyestudio DIY Reed Switch
Module*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

5.2. 2. Single Sensor/Experiment Projects 97

keyestudio WiKi

Test Code

from machine import Pin
import time

ReedSensor = Pin(15, Pin.IN)
while True:

value = ReedSensor.value()
print(value, end = " ")
if value == 0:

print("A magnetic field")
else:

print("There is no magnetic field")
time.sleep(0.1)

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing, the string and the data will be displayed in the ”Shell“ window.

When the sensor detects a magnetic field, val is 0 and the red LED of the module lights up, “0 A magnetic field” will be
displayed. When no magnetic field is detected, val is 1, and the LED on the module goes out, “1 There is no magnetic

field” will be shown, as shown below. Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

98 Chapter 5. Python tutorial

keyestudio WiKi

5.2.16 Project 16: PIR Motion Sensor

Overview
In this kit, there is a Keyestudio PIR motion sensor, which mainly uses an RE200B-P sensor elements. It is a human
body pyroelectric motion sensor based on pyroelectric effect, which can detect infrared rays emitted by humans or
animals, and the Fresnel lens can make the sensor’s detection range farther and wider.

In the experiment, we determine if there is someone moving nearby by reading the high and low levels of the S terminal
on the module. The detected results will be displayed on the Shell.

Working Principle
The upper left part is voltage conversion(VCC to 3.3V). The working voltage of sensors we use is 3.3V, therefore we
can’t use 5V directly. The voltage conversion circuit is needed.

When no person is detected or no infrared signal is received, and pin 1 of the sensor outputs low level. At this time,
the LED on the module will light up and the MOS tube Q1 will be connected and the signal terminal S will detect Low
levels.

When one is detected or an infrared signal is received, and pin 1 of the sensor outputs a high level. Then LED on the
module will go off, the MOS tube Q1 is disconnected and the signal terminal S will detect high levels.

5.2. 2. Single Sensor/Experiment Projects 99

keyestudio WiKi

Required Components

ESP32
Board*1

ESP32 Expansion
Board*1

Keyestudio DIY PIR Motion
Sensor*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

Test Code

from machine import Pin
import time

PIR = Pin(15, Pin.IN)
(continues on next page)

100 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

while True:
value = PIR.value()
print(value, end = " ")
if value == 1:

print("Some body is in this area!")
else:

print("No one!")
time.sleep(0.1)

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing, the string and the data will be displayed in the ”Shell“ window. When the sensor detects someone
nearby, value is 1, the LED will go off and the ”Shell“ window will show“1 Somebody is in this area!”.

On the contrary, the value is 0, the LED will go up and“0 No one!”will be shown, as shown below. Press “Ctrl+C”or

click “Stop/Restart backend”to exit the program.

5.2. 2. Single Sensor/Experiment Projects 101

keyestudio WiKi

5.2.17 Project 17: Active Buzzer

Overview
In this kit, it contains an active buzzer module and a power amplifier module (the principle is equivalent to a passive
buzzer). In this experiment, we control the active buzzer to emit sounds. Since it has its own oscillating circuit, the
buzzer will automatically sound if given large voltage.

Working Principle
From the schematic diagram, the pin of buzzer is connected to a resistor R2 and another port is linked with a NPN
triode Q1. So, if this triode Q1 is powered, the buzzer will sound.

If the base electrode of the triode connected to the R1 resistor is a high level, the triode Q1 will be connected.If the
base electrode is pulled down by the resistor R3, the triode is disconnected.

When we output a high level from the IO port to the triode, the buzzer will emit sounds; if outputting low levels, the
buzzer won’t emit sounds.

102 Chapter 5. Python tutorial

keyestudio WiKi

Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio Active
Buzzer*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

Test Code

from machine import Pin
import time

buzzer = Pin(15, Pin.OUT)
while True:

buzzer.value(1)
time.sleep(1)
buzzer.value(0)
time.sleep(1)

Code Explanation
In the experiment, we set the pin to GPIO15. When setting to high, the active buzzer will beep. When setting to low,
the active buzzer will stop emitting sounds.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the
code starts executing. The active buzzer will emit sound for 1 second, and stop for 1 second. Press “Ctrl+C”or

click “Stop/Restart backend”to exit the program.

5.2. 2. Single Sensor/Experiment Projects 103

keyestudio WiKi

5.2.18 Project 18: 8002b Audio Power Amplifier

Overview
In this kit, there is a Keyestudio 8002b audio power amplifier. The main components of this module are an adjustable
potentiometer, a speaker, and an audio amplifier chip;

The main function of this module is: it can amplify the output audio signal, with a magnification of 8.5 times, and
play sound or music through the built-in low-power speaker, as an external amplifying device for some music playing
equipment.

In the experiment, we used the 8002b power amplifier speaker module to emit sounds of various frequencies.

Working Principle
In fact, it is similar to a passive buzzer. The active buzzer has its own oscillation source. Yet, the passive buzzer does
not have internal oscillation. When controlling the circuit, we need to input square waves of different frequencies to
the positive pole of the component and ground the negative pole to control the buzzer to chime sounds of different
frequencies.

104 Chapter 5. Python tutorial

keyestudio WiKi

Components

ESP32
Board*1

ESP32 Expansion
Board*1

Keyestudio 8002b Audio Power
Amplifier*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

Test Code

5.2. 2. Single Sensor/Experiment Projects 105

keyestudio WiKi

from machine import Pin, PWM
from time import sleep
buzzer = PWM(Pin(15))

buzzer.duty(1000)

buzzer.freq(523)#DO
sleep(0.5)
buzzer.freq(586)#RE
sleep(0.5)
buzzer.freq(658)#MI
sleep(0.5)
buzzer.freq(697)#FA
sleep(0.5)
buzzer.freq(783)#SO
sleep(0.5)
buzzer.freq(879)#LA
sleep(0.5)
buzzer.freq(987)#SI
sleep(0.5)
buzzer.duty(0)

Code Explanation
In this experiment, we use the PWM class of the machine module, buzzer = PWM(Pin(15)) to create an instance of the
PWM class, and the buzzer pin is connected to GPIO15.

The buzzer.duty(1000): set the duty cycle, and the duty cycle is 1000/4095. The larger the value, the louder the buzzer.
When set to 0, the buzzer does not emit sound. buzzer.freq() is the frequency setting method.

In the experiment, we use the PWM on the machine module. buzzer = PWM(Pin(15))
Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. The power amplifier module will emit the sound of the corresponding frequency corresponding to the
beat :DO for 0.5s, Re for 0.5s, Mi for 0.5s, Fa for 0.5s, So for 0.5s, La 0.5s and Si for 0.5s.

Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

106 Chapter 5. Python tutorial

keyestudio WiKi

5.2.19 Project 19: 130 Motor

Description
The 130 motor driver module is compatible with servo motors, which has high efficiency and good quality fans.

It adopts a HR1124S motor control chip. HR1124S is a single-channel H-bridge driver chip for DC motor solutions.
In addition, this chip has low standby current and low quiescent current.

The module is compatible with various single-chip control boards. In the experiment, we can control the rotation
direction of the motor by outputting the voltage directions of the two signal terminals IN+ and IN- to make the motor
rotate.

Working Principle
The chip is used to help drive the motor. We can’t drive it with a triode or an IO port due to its a large current of need.
It is very simple to make the motor rotate. Just apply voltage to both ends of the motor. The direction of the motor is
different in different voltage directions. Within the rated voltage, the higher the voltage, the faster the motor rotates; on
the contrary, the lower the voltage, the slower the motor rotates, or even unable to rotate.

So we can use the PWM port to control the speed of the motor. We haven’t learned PWM here, so we use the high and
low levels to control the motor first.

5.2. 2. Single Sensor/Experiment Projects 107

keyestudio WiKi

Required Components

ESP32 Board*1 ESP32 Expansion Board*1 keyestudio DIY 130 Motor*1 4P Dupont Wire*1

Micro USB Cable*1 Battery Holder*1 Battery (not included)*6

Note: the motor is separated with its fan, you need to assemble it first.

Connection Diagram

130 Motor ESP32 Expansion Board
G G
V 5V
IN+ IO15
IN- IO4

108 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

from machine import Pin
import time

#Two pins of the motor
INA = Pin(15, Pin.OUT) #INA corresponds to IN+
INB = Pin(4, Pin.OUT)#INB corresponds to IN-

while True:
#Counterclockwise 2s
INA.value(1)
INB.value(0)
time.sleep(2)
#stop 1s
INA.value(0)
INB.value(0)
time.sleep(1)
#Turn clockwise for 2s
INA.value(0)
INB.value(1)
time.sleep(2)
#stop 1s
INA.value(0)
INB.value(0)
time.sleep(1)

Code Explanation
Set pins to GPIO4, GPIO15, when the pin GPIO4 outputs low levels and the pin GPIO15 outputs high levels, the motor

5.2. 2. Single Sensor/Experiment Projects 109

keyestudio WiKi

will rotate counterclockwise; when both pins are set to low, the motor stops rotating.

Test Result
Connect the wires according to the experimental wiring diagram and power on. Switch the DIP switch ON the ESP32
expansion board to the ON end, after powering on, click “Run current script”, the code starts executing, then the fan
will rotate counterclockwise for 2 s, stop for 1 s; and rotate clockwise for 2 s and stop for 1 s, cycle alternately. Press

“Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2.20 Project 20: Potentiometer

Overview
The following we will introduce is the Keyestudio rotary potentiometer which is an analog sensor.

The digital IO ports can read the voltage value between 0 and 3.3V and the module only outputs high levels. However,
the analog sensor can read the voltage value through 16 ADC analog ports on the ESP32 board. In the experiment, we
will display the test results on the Shell.

Working Principle

110 Chapter 5. Python tutorial

keyestudio WiKi

It uses a 10K adjustable resistor. We can change the resistance by rotating the potentiometer. The signal S can detect
the voltage changes(0-3.3V) which are analog quantity.

ADC The more bits an ADC has, the denser the partitioning of the simulation, the higher the accuracy of the final
conversion.

Subsection 1: The analog value within 0V—3.3/4095 V corresponds to the number 0; Subsection 2: The analog value
within 3.3/4095V—2*3.3/4095V corresponds to the number 1;

The conversion formula is as follows:

DAC The higher the precision of DAC, the higher the precision of the output voltage value.

The conversion formula is as follows:

ADC on ESP32
The ESP32 has 16 pins that can be used to measure analog signals. GPIO pin serial numbers and analog pin definitions
are shown below:

5.2. 2. Single Sensor/Experiment Projects 111

keyestudio WiKi

ADC number in ESP32 ESP32 GPIO number
ADC0 GPIO 36
ADC3 GPIO 39
ADC4 GPIO 32
ADC5 GPIO33
ADC6 GPIO34
ADC7 GPIO 35
ADC10 GPIO 4
ADC11 GPIO0
ADC12 GPIO2
ADC13 GPIO15
ADC14 GPIO13
ADC15 GPIO 12
ADC16 GPIO 14
ADC17 GPIO27
ADC18 GPIO25
ADC19 GPIO26

DAC on ESP32
The ESP32 has two 8-bit digital-to-analog converters connected to GPIO25 and GPIO26 pins, which are immutable,
as shown below :

Simulate pin number GPIO number
DAC1 GPIO25
DAC2 GPIO26

Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio Rotary Poten-
tiometer*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

112 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

Import Pin, ADC and DAC modules.
from machine import ADC,Pin,DAC
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(34))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

Read ADC value once every 0.1seconds, convert ADC value to DAC value and output it,
and print these data to “Shell”.
try:

while True:
adcVal=adc.read()
dacVal=adcVal//16
voltage = adcVal / 4095.0 * 3.3
print("ADC Val:",adcVal,"DACVal:",dacVal,"Voltage:",voltage,"V")
time.sleep(0.1)

except:
pass

Code Explanation
1). In the experiment, add “From Machine import ADC” to the top of your Python file every time you use the ACD
module, the same goes for DAC modules.

2). machine.ADC(pin): Create an ADC object associated with the given pin. 3). pin: The available pins are
Pin(36)Pin(39)Pin(34Pin(35)Pin(32)Pin(33). DAC(pin). Create an DAC object associated with the given pin.

4). machine.ADC(pin): The available pins are pin (25) pin (26).

5). ADC. Read():Read ADC value and return ADC value.

6).ADC.atten(db): Set attenuation ration (that is, the full range voltage, such as the voltage of 11db full range is 3.3V)

dbattenuation ratio

ADC.ATTIN_0DB —full range of 1.2V

ADC.ATTN_2_5_DB —full range of 1.5V

5.2. 2. Single Sensor/Experiment Projects 113

keyestudio WiKi

ADC.ATTN_6DB —full range of 2.0 V

ADC.ATTN_11DB —full range of 3.3V

ADC.width(bit): Set data width.

bitdata bit

ADC.WIDTH_9BIT —9 data width

ADC.WIDTH_10BIT — 10 data width

ADC.WIDTH_11BIT — 11 data width

ADC.WIDTH_12BIT — 12 data width

7). The read()method reads the ADCvaluerang is 0~4095the adc.read() reads the ADC value input by the
ADC(Pin(34)) Pin and assigns it to a variable named adcVal.

8). DAC.write(value):Output the voltage value, the data rang : 0-255the corresponding output voltage is 0-3.3V.

Test Result

Connect the wires according to the experimental wiring diagram and poweron. Click “Run current script”, the
code starts executing. The “Shell” window prints and displays the potentiometer ADC value, DAC value and voltage
value. Rotating the potentiometer handle, the ADC value, DAC value and voltage value will change. Press “Ctrl+C”or

click “Stop/Restart backend”to exit the program.

114 Chapter 5. Python tutorial

keyestudio WiKi

5.2.21 Project 21: Steam Sensor

Description
This is a DIY electronic building block water drop sensor. It is an analog (digital) input module, also called rain,
rain sensor. It can be used to monitor various weather conditions, detect whether it is raining and the amount of rain,
convert it into digital signal (DO) and analog signal (AO) output, and is widely used in Arduino robot kits, raindrops,
rain sensors, and can be used for various circumstances. It can monitor various weather conditions, and convert it into
digital signal and AO output, and can also be used for automobile automatic wiper system, intelligent lighting system
and intelligent sunroof system.

In the experiment, we input the sensor signal terminal (S terminal) to the analog port of the ESP32 development board,
sense the change of the analog value, and display the corresponding analog value on the shell.

Working Principle
Its principle is to detect the amount of water through the exposed printed parallel lines on the circuit board. The more
water there is, the more wires will be connected, and the conductive contact area increases. The voltage output by pin
2 will gradually increase. The larger the analog value detected by the signal terminal S is.

It can also detect steam in the air. Two position holes are used to install on the other devices.

5.2. 2. Single Sensor/Experiment Projects 115

keyestudio WiKi

Required Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY Steam Sen-
sor *1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

Test Code

Import Pin, ADC and DAC modules.
from machine import ADC,Pin,DAC

(continues on next page)

116 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(34))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

Read ADC value once every 0.1seconds, convert ADC value to DAC value and output it,
and print these data to “Shell”.
try:

while True:
adcVal=adc.read()
dacVal=adcVal//16
voltage = adcVal / 4095.0 * 3.3
print("ADC Val:",adcVal,"DACVal:",dacVal,"Voltage:",voltage,"V")
time.sleep(0.1)

except:
pass

Test Result

Wiring up and powering on, then click “Run current script”, the code starts executing. The Shell will display ADC
value, DAC value and voltage value of the sensor. When a few drops of water are placed in the sensor sensing area, the
ADC value, DAC value and voltage value will change. The more water volume, the greater the output voltage value ,

ADC value and the DAC value. Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2. 2. Single Sensor/Experiment Projects 117

keyestudio WiKi

5.2.22 Project 22: Sound Sensor

Overview
In this kit, there is a Keyestudio DIY electronic block and a sound sensor. In the experiment, we test the analog value
corresponding to the sound level in the current environment with it. The louder the sound, the larger the ADC, DAC
and the voltage value, and the “shell” window will display the test results.

Working Principle
It uses a high-sensitive microphone component and an LM386 chip. We build the circuit with the LM386 chip and
amplify the sound through the high-sensitive microphone. In addition, we can adjust the sound volume by the poten-
tiometer. Rotate it clockwise, the sound will get louder.

118 Chapter 5. Python tutorial

keyestudio WiKi

Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY Sound Sen-
sor*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

5.2. 2. Single Sensor/Experiment Projects 119

keyestudio WiKi

Test Code

Import Pin, ADC and DAC modules.
from machine import ADC,Pin,DAC
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(34))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

Read ADC value once every 0.1seconds, convert ADC value to DAC value and output it,
and print these data to “Shell”.
try:

while True:
adcVal=adc.read()
dacVal=adcVal//16
voltage = adcVal / 4095.0 * 3.3
print("ADC Val:",adcVal,"DACVal:",dacVal,"Voltage:",voltage,"V")
time.sleep(0.1)

except:
pass

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. The “Shell” window will display the sound sensor ADC value, DAC value and voltage value.

Rotate the potentiometer clockwise and speak at the MIC. Then you can see the analog value get larger, as shown below.

Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

120 Chapter 5. Python tutorial

keyestudio WiKi

5.2.23 Project 23: Photoresistor

Description
In this kit, there is a photoresistor which consists of photosensitive resistance elements. Its resistance changes with the
light intensity. Also, it converts the resistance change into a voltage change through the characteristic of the photosen-
sitive resistive element. When wiring it up, we interface its signal terminal (S terminal) with the analog port of ESP32
, so as to sense the change of the analog value, and display the corresponding analog value in the shell.

Working Principle
If there is no light, the resistance is 0.2M and the detected voltage at the terminal 2 is close to 0. When the light intensity
increases, the resistance of photoresistor and detected voltage will diminish, and the detected voltage is increasing.

5.2. 2. Single Sensor/Experiment Projects 121

keyestudio WiKi

Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY Photoresis-
tor*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

Test Code

Import Pin, ADC and DAC modules.
from machine import ADC,Pin,DAC
import time

(continues on next page)

122 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(34))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

Read ADC value once every 0.1seconds, convert ADC value to DAC value and output it,
and print these data to “Shell”.
try:

while True:
adcVal=adc.read()
dacVal=adcVal//16
voltage = adcVal / 4095.0 * 3.3
print("ADC Val:",adcVal,"DACVal:",dacVal,"Voltage:",voltage,"V")
time.sleep(0.1)

except:
pass

Test Result

Connect the wires according to the experimental wiring diagram and poweron. Click “Run current script”, the code
starts executing. The “Shell” window will display the photoresistor ADC value, DAC value and voltage value. The

brighter the light, the greater the analog value, as shown below. Press “Ctrl+C”or click “Stop/Restart backend”to
exit the program.

5.2. 2. Single Sensor/Experiment Projects 123

keyestudio WiKi

5.2.24 Project 24: NTC-MF52AT Thermistor

Overview
In the experiment, there is a NTC-MF52AT analog thermistor. We connect its signal terminal to the analog port of the
ESP32 mainboard and read the corresponding ADC value, voltage value and thermistor value.

We can use analog values to calculate the temperature of the current environment through specific formulas. Since the
temperature calculation formula is more complicated, we only read the corresponding analog value.

Working Principle

124 Chapter 5. Python tutorial

keyestudio WiKi

This module mainly uses NTC-MF52AT thermistor element, which can can sense the changes of the surrounding
environment temperature. Resistance changes with the temperature, causing the voltage of the signal terminal S to
change.

This sensor uses the characteristics of NTC-MF52AT thermistor element to convert resistance changes into voltage
changes.

Components

ESP32
Board*1

ESP32 Expansion
Board*1

Keyestudio NTC-MF52AT Ther-
mistor*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

Test Code

5.2. 2. Single Sensor/Experiment Projects 125

keyestudio WiKi

from machine import Pin, ADC
import time
import math

#Set ADC
adc=ADC(Pin(34))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

try:
while True:

adcValue = adc.read()
voltage = adcValue / 4095 * 3.3
Rt = (3.3 - voltage) / voltage * 4.7;
tempK = (1 / (1 / (273.15+25) + (math.log(Rt/10)) / 3950))
tempC = (tempK - 273.15)
print("ADC value:",adcValue," Voltage:",voltage,"V"," Temperature: ",tempC,"C

→˓");
time.sleep(1)

except:
pass

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. The “Shell” window will display the thermistor ADC value, voltage value and temperature value, as

shown below. Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

126 Chapter 5. Python tutorial

keyestudio WiKi

5.2.25 Project 25: Thin-film Pressure Sensor

Overview
In this kit, there is a Keyestudio thin-film pressure sensor. The thin-film pressure sensor composed of a new type
of nano pressure-sensitive material and a comfortable ultra-thin film substrate, has waterproof and pressure-sensitive
functions.

In the experiment, we determine the pressure by collecting the analog signal on the S end of the module. The smaller
the ADC value, DAC value and voltage value, the greater the pressure; and the displayed results will shown on the
Shell.

Working Principle
When the sensor is pressed by external forces, the resistance value of sensor will vary. We convert the pressure signals
detected by the sensor into the electric signals through a circuit. Then we can obtain the pressure changes by detecting
voltage signal changes.

5.2. 2. Single Sensor/Experiment Projects 127

keyestudio WiKi

Components

ESP32
Board*1

ESP32 Expansion
Board*1

KeyestudioThin-film Pressure
Sensor*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

128 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

Import Pin, ADC and DAC modules.
from machine import ADC,Pin,DAC
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(34))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

Read ADC value once every 0.1seconds, convert ADC value to DAC value and output it,
and print these data to “Shell”.
try:

while True:
adcVal=adc.read()
dacVal=adcVal//16
voltage = adcVal / 4095.0 * 3.3
print("ADC Val:",adcVal,"DACVal:",dacVal,"Voltage:",voltage,"V")
time.sleep(0.1)

except:
pass

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. The “Shell” window will display the thin-film pressure sensor ADC value, voltage value and DAC
value. When the thin-film is pressed by fingers, the analog value will decrease, as shown below. Press “Ctrl+C”or

click “Stop/Restart backend” to exit the program.

5.2. 2. Single Sensor/Experiment Projects 129

keyestudio WiKi

5.2.26 Project 26: Flame Sensor

Description
In daily life, it is often seen that a fire broke out without any precaution. It will cause great economic and human loss.
So how can we avoid this situation? Right, install a flame sensor and a speaker in those places that easily break out a
fire. When the flame sensor detects a fire, the speaker will alarm people quickly to put out the fire.

So in this project, you will learn how to use a flame sensor and an active buzzer module to simulate the fire alarm

130 Chapter 5. Python tutorial

keyestudio WiKi

system.

Working Principle
This flame sensor can be used to detect fire or other light sources with wavelength stands at 700nm ~ 1000nm. Its
detection angle is about 60°. You can rotate the potentiometer on the sensor to control its sensitivity. Adjust the
potentiometer to make the LED at the critical point between on and off state. The sensitivity is the best.

From the below figure, power up. When detecting fire, the digital pin outputs low levels, the red LED2 will light up first,
the digital signal terminal D0 outputs a low level, and the red LED1 will light up. The stronger the external infrared
light, the smaller the value; the weaker the infrared light, the larger the value.

Required Components

ESP32 Board*1 ESP32 Expansion
Board*1

keyestudio DIY Flame Sen-
sor*1

4P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

5.2. 2. Single Sensor/Experiment Projects 131

keyestudio WiKi

Test Code

Import Pin, ADC and DAC modules.
from machine import ADC,Pin,DAC
import time

flame_D = Pin(13, Pin.IN)
Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(34))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

Read digital value and ADC value once every 0.1seconds, convert ADC value to DAC value␣
→˓and Voltage value and output it,
and print these data to “Shell”.
try:

while True:
digitalVal = flame_D.value()
adcVal=adc.read()
dacVal=adcVal//16
voltage = adcVal / 4095.0 * 3.3
print("digitalVal:",digitalVal,"ADC Val:",adcVal,"DACVal:",dacVal,"Voltage:",

→˓voltage,"V")
time.sleep(0.1)

except:
pass

Code Explanation
Two pins we use are defined as GPIO13 and GPIO34 according to the wiring-up diagram, and print digital signals and

132 Chapter 5. Python tutorial

keyestudio WiKi

analog signals respectively.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. After powering on, rotating the potentiometer on the sensor, we can adjust the red LED bright and not
bright critical point. The red LED2 on the sensor module is lit, while the red LED1 is not.

The “Shell” window will print and display the digital value, ADC value, DAC value and voltage value of the flame
sensor. When fire is detected, the LED1 will be on. the digital value will change from 1 to 0, and the analog value will

become smaller, as shown below. Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2.27 Project 27: MQ-2 Gas Sensor

Description
This analog gas sensor - MQ2 is used in gas leakage detecting equipment in consumer electronics and industrial markets.

This sensor is suitable for detecting LPG, I-butane, propane, methane, alcohol, Hydrogen and smoke. It has high
sensitivity and quick response.

In addition, the sensitivity can be adjusted by rotating the potentiometer.

In the experiment, we read the analog value at the A0 port and the D0 port to determine the content of gas.

Working Principle
The greater the concentration of smoke, the greater the conductivity, the lower the output resistance, the greater the
output analog signal.

When in use, the A0 terminal reads the analog value of the corresponding gas; the D0 terminal is connected to an
LM393 chip (voltage comparator), we can adjust the alarm threshold of the measured gas through the potentiometer,
and output the digital value at D0. When the measured gas content exceeds the critical point, the D0 terminal outputs
a low level. When the measured gas content does not exceed the critical point, the D0 terminal outputs a high level.

5.2. 2. Single Sensor/Experiment Projects 133

keyestudio WiKi

Required Components

ESP32
Board*1

ESP32 Expansion
Board*1

keyestudio DIY Analog Gas
Sensor*1

4P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

134 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

Import Pin, ADC and DAC modules.
from machine import ADC,Pin,DAC
import time

Turn on and configure the ADC with the range of 0-3.3V
mq2_D = Pin(13, Pin.IN)
adc=ADC(Pin(34))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

Read digital value and ADC value once every 0.1seconds, convert ADC value to DAC value␣
→˓and Voltage value and output it,
and print these data to “Shell”.

while True:
digitalVal = mq2_D.value()
adcVal=adc.read()
dacVal=adcVal//16
voltage = adcVal / 4095.0 * 3.3
print("digitalVal:",digitalVal,"ADC Val:",adcVal,"DACVal:",dacVal,"Voltage:",voltage,

→˓"V", end = " ")
if digitalVal == 0:

print("Exceeding")
else:

print("Normal")
time.sleep(0.1)

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code

5.2. 2. Single Sensor/Experiment Projects 135

keyestudio WiKi

starts executing. The “shell” window will display the corresponding data and string. After powering on, by rotating
the potentiometer on the sensor, we can adjust the red LED bright and not bright critical point.

When the sensor detects the smoke or combustible gas, the red LED lights up and the digital value in the “Shell”
window changes from 1 to 0, the ADC value, DAC value and voltage value increase, as shown below. Press “Ctrl+C”or

click “Stop/Restart backend”to exit the program.

136 Chapter 5. Python tutorial

keyestudio WiKi

5.2.28 Project 28: MQ-3 Alcohol Sensor

Description
In this kit, there is a MQ-3 alcohol sensor, which uses the gas-sensing material is tin dioxide (SnO2) which has a low
conductivity in clean air. When there is alcohol vapor in the environment where the sensor is located, the conductivity
of the sensor increases with the increase of the alcohol gas concentration in the air. The change in conductivity can be
converted into an output signal corresponding to the gas concentration using a simple circuit.

In the experiment, we read the analog value at the A0 end of the sensor and the digital value at the D0 end to judge the
content of alcohol vapor in the air and whether they exceed the standard.

Working Principle
At a certain temperature, the conductivity changes with the composition of the ambient gas. When in use, A0 terminal
reads the analog value corresponding to alcohol vapor; D0 terminal is connected to an LM393 chip (comparator), we
can adjust and measure the alcohol vapor alarm threshold through the potentiometer, and output the digital value at D0.

When the measured alcohol vapor content exceeds the critical point, the D0 terminal outputs a low level; when the
measured alcohol vapor content does not exceed the critical point, the D0 terminal outputs a high level.

5.2. 2. Single Sensor/Experiment Projects 137

keyestudio WiKi

Components Required

ESP32 Board*1 ESP32 Expansion
Board*1

keyestudio Alcohol Sen-
sor*1

4P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

138 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

Import Pin, ADC and DAC modules.
from machine import ADC,Pin,DAC
import time

Turn on and configure the ADC with the range of 0-3.3V
mq3_D = Pin(13, Pin.IN)
adc=ADC(Pin(34))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

Read digital value and ADC value once every 0.1seconds, convert ADC value to DAC value␣
→˓and Voltage value and output it,
and print these data to “Shell”.

while True:
digitalVal = mq3_D.value()
adcVal=adc.read()
dacVal=adcVal//16
voltage = adcVal / 4095.0 * 3.3
print("digitalVal:",digitalVal,"ADC Val:",adcVal,"DACVal:",dacVal,"Voltage:",voltage,

→˓"V", end = " ")
if digitalVal == 0:

print("Exceeding")
else:

print("Normal")
(continues on next page)

5.2. 2. Single Sensor/Experiment Projects 139

keyestudio WiKi

(continued from previous page)

time.sleep(0.1)

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. The “shell” window will display the corresponding data and string. After powering on, by rotating
the potentiometer on the sensor, we can adjust the yellow and green LED bright and not bright critical point.

When the sensor detects the alcohol gas, the yellow and green LED lights up and the digital value in the “Shell”
window changes from 1 to 0, the ADC value, DAC value and voltage value increase, as shown below. Press “Ctrl+C”or

click “Stop/Restart backend”to exit the program.

140 Chapter 5. Python tutorial

keyestudio WiKi

5.2.29 Project 29: Five-key AD Button Module

Description
When we talked about analog and digital sensors earlier, we talked about the single-channel key module. When we
press the key, it outputs a low level, and when we release the key, it outputs a high level. We can only read these two
digital signals. In fact, the key module ADC acquisition can also be performed. In this kit, a DIY electronic building
block five-way AD button module is included.

We can judge which key is pressed through the analog value. In the experiment, we print out the key press information
in the shell.

Working Principle
Let’s look at the schematic diagram, when we do not press the key, the OUT of S output to the signal end is pulled down
by R1. At this time, we read the low level 0V. When we press the key SW1, the OUT of the output to the signal end S is
directly connected to the VCC. At this time, we read the high level 3.3V(the figure is marked as a 12-bit ADC(0~4095)
and VCC is 5V. The principle is the same. Here we have VCC of 3.3V and ADC mapped to 12 bits), which is an analog
value of 4095.

Next,when we press the key SW2, the OUT terminal voltage of the signal we read is the voltage between R2 and R1,
namely VCC*R1/(R2+R1), which is about 2.64V, and the analog value is about 3276.

When we press the key SW3, the OUT terminal voltage of the signal we read is the voltage between R2+R3 and R1,
namely VCC*R1/(R3+R2+R1), which is about 1.99V, and the analog value is about 2469.

When we press the key SW4, the OUT terminal voltage of the signal we read is the voltage between R2+R3+R4 and
R1, namely VCC*R1/(R4+R3+R2+R1), about 1.31V, and the analog value is about 1626.

Similarly, when we press the key SW5, the OUT terminal voltage of the signal we read is the voltage between
R2+R3+R4+R5 and R1, namely VCC*R1/(R5+R4+R3+R2+R1), which is about 0.68V, and the analog value is about
844.

5.2. 2. Single Sensor/Experiment Projects 141

keyestudio WiKi

Components Required

ESP32
Board*1

ESP32 Expansion
Board*1

keyestudio 5-Channel AD Button
Module*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

Test Code

142 Chapter 5. Python tutorial

keyestudio WiKi

Import Pin and ADC modules.
from machine import ADC,Pin
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(34))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

while True:
adcvalue = adc.read()
print(adcvalue, end = '')
if adcvalue <= 500:

print(" no key is pressed")
elif adcvalue <= 1000:

print(" SW5 is pressed")
elif adcvalue <= 2000:

print(" SW4 is pressed")
elif adcvalue <= 3000:

print(" SW3 is pressed")
elif adcvalue <= 4000:

print(" SW2 is pressed")
else:

print(" SW1 is pressed")
time.sleep(0.5)

Code Explanation
We assign the read analog value to the variable val, and the shell displays the value of val, (our default setting is 9600,
which can be changed). We judge the read analog value. When the analog value is lower than 6000, we judge that the
button is not pressed. When the analog value is between 6000 and 20000, we judge that the button SW5 is pressed.
Between 20000 and 32000, we judge that the button SW4 is pressed.

when the analog value is between 32000 and 45000, we judge that the button SW3 is pressed. When the analog value
is between 45000 and 59000, we judge that the button SW2 is pressed. Press. Otherwise, when the analog value is
above 59000, we judge that the button SW1 is pressed. If we only use a fixed value, there will inevitably be errors, so
we use the interval to judge.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. when the button is pressed, the shell prints out the corresponding information, as shown in the figure

below. Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2. 2. Single Sensor/Experiment Projects 143

keyestudio WiKi

5.2.30 Project 30: Joystick Module

Overview
Game handle controllers are ubiquitous. It mainly uses PS2 joysticks. When controlling it, we need to connect the
X and Y ports of the module to the analog port of the single-chip microcomputer, port B to the digital port of the
single-chip microcomputer, VCC to the power output port(3.3-5V), and GND to the GND of the MCU. We can read
the high and low levels of two analog values and one digital port) to determine the working status of the joystick on the
module.

In the experiment, two analog values(x axis and y axis) will be shown on Shell.

Working Principle

144 Chapter 5. Python tutorial

keyestudio WiKi

In fact, its working principle is very simple. Its inside structure is equivalent to two adjustable potentiometers and
a button. When this button is not pressed and the module is pulled down by R1, low levels will be output ; on the
contrary, when the button is pressed, VCC will be connected (high levels). When we move the joystick, the internal
potentiometer will adjust to output different voltages, and we can read the analog value.

Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio Joystick Mod-
ule*1

5P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

5.2. 2. Single Sensor/Experiment Projects 145

keyestudio WiKi

Test Code

from machine import Pin, ADC
import time
Initialize the joystick module (ADC function)
rocker_x=ADC(Pin(34))
rocker_y=ADC(Pin(35))
button_z=Pin(13,Pin.IN,Pin.PULL_UP)

Set the acquisition range of voltage of the two ADC channels to 0-3.3V,
and the acquisition width of data to 0-4095.
rocker_x.atten(ADC.ATTN_11DB)
rocker_y.atten(ADC.ATTN_11DB)
rocker_x.width(ADC.WIDTH_12BIT)
rocker_y.width(ADC.WIDTH_12BIT)

In the code, configure Z_Pin to pull-up input mode.
In loop(), use Read () to read the value of axes X and Y
and use value() to read the value of axis Z, and then display them.
while True:

print("X,Y,Z:",rocker_x.read(),",",rocker_y.read(),",",button_z.value())
time.sleep(0.5)

Code Explanation
In the experiment, according to the wiring diagram, the x pin is set to GPIO34, the y pin is set to GPIO35 and the pin
of the joystick is set to GPIO13.

Test Result

Wire up, power on and click “Run current script”, the code starts executing. The “Shell” window will print the
analog and digital values of the current joystick. Moving the joystick or pressing it will change the analog and digital

values in “Shell”. Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

146 Chapter 5. Python tutorial

keyestudio WiKi

5.2.31 Project 31: Relay Module

Overview
In our daily life, we usually use communication to drive electrical equipments, and sometimes we use switches to
control electrical equipments. If the switch is connected directly to the ac circuit, leakage occurs and people are in
danger. Therefore, from the perspective of safety, we specially designed this relay module with NO(normally open)
end and NC(normally closed) end.

Working Principle
Relay is compatible with a variety of micro-controller control board, such as Arduino series micro-controller, which is
a small current to control the operation of large current “automatic switch”.

5.2. 2. Single Sensor/Experiment Projects 147

keyestudio WiKi

Input Voltage3.3V-5V

It can let the MCU control board drive 3A load, such as an LED lamp belt, a DC motor, a micro water pump and a
solenoid valve plugable interface design, which is easy to use.

Components Required

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio Relay Mod-
ule*1

3P Dupont
Wire*2

Micro USB Ca-
ble*1

Connection Diagram

Test Code

148 Chapter 5. Python tutorial

keyestudio WiKi

from machine import Pin
import time

create relay from Pin 15, Set Pin 15 to output
relay = Pin(15, Pin.OUT)

The relay is opened, COM and NO are connected on the relay, and COM and NC are␣
→˓disconnected.
def relay_on():

relay(1)

The relay is closed, the COM and NO on the relay are disconnected, and the COM and NC␣
→˓are connected.
def relay_off():

relay(0)

Loop, the relay is on for one second and off for one second
while True:

relay_on()
time.sleep(1)
relay_off()
time.sleep(1)

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. The relay will cycle on and off, on for 1 second, off for 1 second. At the same time, you can hear the
sound of the relay on and off as well as see the change of the indicator light on the relay.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2.32 Project 32: SK6812 RGB Module

Overview
In previous lessons, we learned about the plug-in RGB module and used PWM signals to color the three pins of the
module.

5.2. 2. Single Sensor/Experiment Projects 149

keyestudio WiKi

There is a Keyestudio 6812 RGB module whose the driving principle is different from the plug-in RGB module. It
can only control with one pin. This is a set. It is an intelligent externally controlled LED light source with the control
circuit and the light-emitting circuit. Each LED element is the same as a 5050 LED lamp bead, and each component
is a pixel. There are four lamp beads on the module, which indicates four pixels.

In the experiment, we make different lights show different colors.

Working Principle
From the schematic diagram, we can see that these four pixel lighting beads are all connected in series. In fact, no
matter how many they are, we can use a pin to control a light and let it display any color. The pixel point contains a data
latch signal shaping amplifier drive circuit, a high-precision internal oscillator and a 12V high-voltage programmable
constant current control part, which effectively ensures the color of the pixel point light is highly consistent.

The data protocol adopts a single-wire zero-code communication method. After the pixel is powered up and reset, the
S terminal receives the data transmitted from the controller. The first 24bit data sent is extracted by the first pixel and
sent to the data latch of the pixel.

Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio 6812 RGB Mod-
ule*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

150 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

#Import Pin, neopiexl and time modules.
from machine import Pin
import neopixel
import time

#Define the number of pin and LEDs connected to neopixel.
pin = Pin(15, Pin.OUT)
np = neopixel.NeoPixel(pin, 4)

#brightness :0-255
brightness=100
colors=[[brightness,0,0], #red

[0,brightness,0], #green
[0,0,brightness], #blue
[brightness,brightness,brightness], #white
[0,0,0]] #close

#Nest two for loops to make the module repeatedly display five states of red, green,␣
→˓blue, white and OFF.
while True:

for i in range(0,5):
for j in range(0,4):

np[j]=colors[i]
np.write()
time.sleep_ms(50)

time.sleep_ms(500)
time.sleep_ms(500)

Code Explanation
A few function ports and functions:

np = neopixel.NeoPixel(pin, 4) , there are four LED beads, so we set to 4.

pin = Pin(15, Pin.OUT) , this is the pin number, we connect to GP15.

brightness = 100, brightness setting 255 implies brightest.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. Then we can see the four RGB LEDs show various colors.

Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2. 2. Single Sensor/Experiment Projects 151

keyestudio WiKi

5.2.33 Project 33: Rotary Encoder

Overview
In this kit, there is a Keyestudio rotary encoder, dubbed as switch encoder. It is applied to automotive electronics,
multimedia audio, instrumentation, household appliances, smart home, medical equipment and so on.

In the experiment, it it used for counting. When we rotate the rotary encoder clockwise, the set data falls by 1. If you
rotate it anticlockwise, the set data is up 1, and when the middle button is pressed, the value will be show on Shell.

Working Principle
The incremental encoder converts the displacement into a periodic electric signal, and then converts this sig-
nal into a counting pulse, and the number of pulses indicates the size of the displacement.

This module mainly uses 20pulse rotary encoder components. It can calculate the number of pulses output during clock-
wise and reverse rotation. There is no limit to count rotation. It resets to the initial state, that is, starts counting from 0.

152 Chapter 5. Python tutorial

keyestudio WiKi

Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio Rotary En-
coder*1

5P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

Add Library
Open“Thonny”click“This computer”→“D:”→“2. ESP32_code_MicroPython”→“lesson 30. Rotary encoder count-
ing”. Select“rotary.py”and“rotary_irq_rp2.py”right-click“Upload to /”

5.2. 2. Single Sensor/Experiment Projects 153

keyestudio WiKi

Test Code

import time
from rotary_irq_rp2 import RotaryIRQ
from machine import Pin

SW=Pin(27,Pin.IN,Pin.PULL_UP)
r = RotaryIRQ(pin_num_clk=12,

pin_num_dt=14,
min_val=0,

(continues on next page)

154 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

reverse=False,
range_mode=RotaryIRQ.RANGE_UNBOUNDED)

val_old = r.value()
while True:

try:
val_new = r.value()
if SW.value()==0 and n==0:

print("Button Pressed")
print("Selected Number is : ",val_new)
n=1
while SW.value()==0:

continue
n=0
if val_old != val_new:

val_old = val_new
print('result =', val_new)

time.sleep_ms(50)
except KeyboardInterrupt:

break

Code Explanation
1). We will see the file rotary.py and rotary_irq_rp2.py. This meansthat we save them in the ESP32 successfully. Then
we can use from rotary_irq_rp2 import RotaryIRQ.
2). SW=Pin(20,Pin.\IN,Pin.PULL_UP) indicates that the SW pin is connected to GPIO27, pin_num_clk=12 indi-
cates that the pin CLK is connected to GPIO12, and pin_num_dt=14 means that the DT pin is connected to GPIO14.
We can change these pin numbers.

3). try/except is the python language exception capture processing statement, try executes the code, except executes
the code when an exception occurs, and when we press Ctrl+C, the program exits.

4). r.value() returns the value of the encoder

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. Rotate the encoder clockwise, the displayed data decrease, rotate the encoder counterclockwise, the
displayed data increase.

Press the middle button of the encoder, the displayed data is the value of the encoder, as shown in the figure below.

Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2. 2. Single Sensor/Experiment Projects 155

keyestudio WiKi

5.2.34 Project 34: Servo Control

Overview
Servo is a position control rotary actuator. It mainly consists of a housing, a circuit board, a core-less motor, a gear and
a position sensor.

In general, servo has three lines in brown, red and orange. The brown wire is grounded, the red one is a positive pole
line and the orange one is a signal line.

156 Chapter 5. Python tutorial

keyestudio WiKi

Working Principle
The rotation angle of servo motor is controlled by regulating the duty cycle of PWM (Pulse-Width Modulation) signal.
The standard cycle of PWM signal is 20ms (50Hz). Theoretically, the width is distributed between 1ms-2ms, but in
fact, it’s between 0.5ms-2.5ms. The width corresponds the rotation angle from 0° to 180°. But note that for different
brand motors, the same signal may have different rotation angles.

5.2. 2. Single Sensor/Experiment Projects 157

keyestudio WiKi

Components

ESP32 Board*1 ESP32 Expansion Board*1 Servo*1 Micro USB Cable*1

Connection Diagram

Test Code 1

from machine import Pin, PWM
import time
pwm = PWM(Pin(4))
pwm.freq(50)

'''
Duty cycle corresponding to the Angle
0°----2.5%----25
45°----5%----51.2
90°----7.5%----77
135°----10%----102.4
180°----12.5%----128
'''
angle_0 = 25
angle_90 = 77
angle_180 = 128

while True:
pwm.duty(angle_0)
time.sleep(1)
pwm.duty(angle_90)

(continues on next page)

158 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

time.sleep(1)
pwm.duty(angle_180)
time.sleep(1)

Code Explanation 1
According to the angle of the signal pulse width, it is converted into a duty cycle. The formula is: 2.5+angle/180*10.
The PWM pin resolution of ESP32 is 2^10 = 1024. When converted to 0 degree, its duty cycle is 1024 * 2.5% =
25.6 , when the angle is 180 degrees, its duty cycle value is 1024* 12.5% = 128, these two values will be related to
the program, considering the error and rotation angle, I set the duty cycle at between 10 and 150, the servo can rotate
smoothly 0~180 degrees

Test Result 1

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code

starts executing, the servo will rotate 0°90° and 180° cyclically. Press “Ctrl+C”or click “Stop/Restart backend” to
exit the program.

Test Code 2

from utime import sleep
from machine import Pin
from machine import PWM

pwm = PWM(Pin(4))#Steering gear pin is connected to GP4.
pwm.freq(50)#20ms period, so the frequency is 50Hz
'''
Duty cycle corresponding to the Angle
0°----2.5%----25
45°----5%----51.2
90°----7.5%----77
135°----10%----102.4
180°----12.5%----128
'''
Set the servo motor rotation Angle
def setServoCycle (position):

pwm.duty(position)
sleep(0.01)

Convert the rotation Angle to duty cycle
def convert(x, i_m, i_M, o_m, o_M):

return max(min(o_M, (x - i_m) * (o_M - o_m) // (i_M - i_m) + o_m), o_m)

while True:
for degree in range(0, 180, 1):#servo goes from 0 to 180

pos = convert(degree, 0, 180, 20, 150)
setServoCycle(pos)

for degree in range(180, 0, -1):#servo goes from 180 to 0
pos = convert(degree, 0, 180, 20, 150)
setServoCycle(pos)

Code Explanation 2
convert(x, i_m, i_M, o_m, o_M): x is the value we want to map; i_m, i_M are the lower and upper limits of the current

5.2. 2. Single Sensor/Experiment Projects 159

keyestudio WiKi

value; o_m, o_M are the lower and upper limits of the target range we want to map to.

Test Result 2

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. The servo rotates from 0° to 180° by moving 1° for each 15ms.

Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2.35 Project 35: Ultrasonic Sensor

Bats and some marine animals are able to use high frequencies of sound for echolocation or communication. They can
emit ultrasonic waves from the larynx through the mouth or nose and use the sound waves that bounce back to orient
and determine the position, size and whether nearby objects are moving.

Ultrasonic is a frequency higher than 20000 Hz sound wave, which has a good direction, a strong penetration ability,
and is easy to obtain more concentrated sound energy as well as spread far in the water. It can be used for ranging,
speed measurement, cleaning, welding, gravel, sterilization and disinfection. What‘s more, it has many applications in
medicine, military, industry and agriculture.

Overview
In this kit, there is a keyes HC-SR04 ultrasonic sensor, which can detect obstacles in front and the detailed distance
between the sensor and the obstacle. Its principle is the same as that of bat flying. It can emit the ultrasonic signals that
cannot be heard by humans. When these signals hit an obstacle and come back immediately. The distance between the
sensor and the obstacle can be calculated by the time gap of emitting signals and receiving signals.

In the experiment, we use the sensor to detect the distance between the sensor and the obstacle, and print the test result.

Working Principle

160 Chapter 5. Python tutorial

keyestudio WiKi

The most common ultrasonic ranging method is the echo detection. As shown below; when the ultrasonic emitter emits
the ultrasonic waves towards certain direction, the counter will count. The ultrasonic waves travel and reflect back once
encountering the obstacle. Then the counter will stop counting when the receiver receives the ultrasonic waves coming
back.

The ultrasonic wave is also sound wave, and its speed of sound V is related to temperature. Generally, it travels 340m/s
in the air. According to time t, we can calculate the distance s from the emitting spot to the obstacle.

𝑠 = 340𝑡/2

The HC-SR04 ultrasonic ranging module can provide a non-contact distance sensing function of 2cm-400cm, and the
ranging accuracy can reach as high as 3mm; the module includes an ultrasonic transmitter, receiver and control circuit.
Basic working principle:

1). First pull down the TRIG, and then trigger it with at least 10us high level signal;

2). After triggering, the module will automatically transmit eight 40KHZ square waves, and automatically detect
whether there is a signal to return.

3). If there is a signal returned back, through the ECHO to output a high level, the duration time of high level is actually
the time from emission to reception of ultrasonic.

Components

ESP32
Board*1

ESP32 Expansion
Board*1

keyestudio SR01 Ultrasonic
Sensor*1

4P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

5.2. 2. Single Sensor/Experiment Projects 161

keyestudio WiKi

Test Code

from machine import Pin
import time

Define the control pins of the ultrasonic ranging module.
Trig = Pin(13, Pin.OUT, 0)
Echo = Pin(14, Pin.IN, 0)

distance = 0 # Define the initial distance to be 0.
soundVelocity = 340 #Set the speed of sound.

The getDistance() function is used to drive the ultrasonic module to measure distance,
the Trig pin keeps at high level for 10us to start the ultrasonic module.
Echo.value() is used to read the status of ultrasonic module’s Echo pin,
and then use timestamp function of the time module to calculate the duration of Echo
pin’s high level,calculate the measured distance based on time and return the value.
def getDistance():

Trig.value(1)
time.sleep_us(10)
Trig.value(0)
while not Echo.value():

pass
pingStart = time.ticks_us()
while Echo.value():

pass
pingStop = time.ticks_us()
pingTime = time.ticks_diff(pingStop, pingStart) // 2
distance = int(soundVelocity * pingTime // 10000)
return distance

Delay for 2 seconds and wait for the ultrasonic module to stabilize,
Print data obtained from ultrasonic module every 500 milliseconds.
time.sleep(2)
while True:

time.sleep_ms(500)
(continues on next page)

162 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

distance = getDistance()
print("Distance: ", distance, "cm")

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the
code starts executing. The “Shell” window will print the distance between the ultrasonic sensor and the object.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2. 2. Single Sensor/Experiment Projects 163

keyestudio WiKi

5.2.36 Project 36: IR Receiver Module

Overview
Infrared remote control is currently the most widely used means of communication and remote control, which has
the characteristics of small volume, low power consumption, strong function and low cost. Therefore, recorder, audio
equipment, air conditioning machine and toys and other small electrical devices have also used the infrared remote
control.

Its transmitting circuit is the use of infrared light emitting diode to emit modulated infrared light wave. The circuit
is composed of infrared receiving diode, triode or silicon photocell. They convert infrared light emitted by infrared
emitter into corresponding electrical signal, and then send back amplifier.

In this experiment, we need to know how to use the infrared receiving sensor, which mainly uses the VS1838B infrared
receiving sensor element. It integrates receiving, amplifying, and demodulating. The internal IC has already completed
the demodulation, and the output is a digital signal. It can receive 38KHz modulated remote control signal. In the
experiment, we use the IR receiver to receive the infrared signal emitted by the external infrared transmitting device,
and display the received signal in the shell.

Working Principle
The main part of the IR remote control system is modulation, transmission and reception. The modulated carrier
frequency is generally between 30khz and 60khz, and most of them use a square wave of 38kHz and a duty ratio of 1/3.
A 4.7K pull-up resistor R3 is added to the signal end of the infrared receiver.

164 Chapter 5. Python tutorial

keyestudio WiKi

Components

ESP32
Board*11

ESP32 Expansion
Board*1

Keyestudio DIYIR Re-
ceiver*1

3P Dupont
Wire*1

Micro USB
Cable*1

Remote Con-
trol*1

Connection Diagram

Test Code

import utime
from machine import Pin

ird = Pin(15,Pin.IN)

(continues on next page)

5.2. 2. Single Sensor/Experiment Projects 165

keyestudio WiKi

(continued from previous page)

act = {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2": "LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3
→˓": "LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",

"4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5": "LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6
→˓": "LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

"7": "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8": "LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9
→˓": "LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

"0": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up": "LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH",
→˓"Down": "LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",

"Left": "LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":
→˓"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok": "LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",

"*": "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#": "LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read_ircode(ird):
wait = 1
complete = 0
seq0 = []
seq1 = []

while wait == 1:
if ird.value() == 0:

wait = 0
while wait == 0 and complete == 0:

start = utime.ticks_us()
while ird.value() == 0:

ms1 = utime.ticks_us()
diff = utime.ticks_diff(ms1,start)
seq0.append(diff)
while ird.value() == 1 and complete == 0:

ms2 = utime.ticks_us()
diff = utime.ticks_diff(ms2,ms1)
if diff > 10000:

complete = 1
seq1.append(diff)

code = ""
for val in seq1:

if val < 2000:
if val < 700:

code += "L"
else:

code += "H"
print(code)
command = ""
for k,v in act.items():

if code == v:
command = k

if command == "":
command = code

return command

while True:
command = read_ircode(ird)

(continues on next page)

166 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

print(command)
utime.sleep(0.5)

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. Find the infrared remote control, pull out the insulating sheet, and press the button at the receiving
head of the infrared receiving sensor. After receiving the signal, the LED on the infrared receiving sensor also starts
to flash, as shown in the figure below.

Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2. 2. Single Sensor/Experiment Projects 167

keyestudio WiKi

5.2.37 Project 37: DS18B20 Temperature Sensor

Description
In this kit, there is a DS18B20 temperature sensor, which is from maxim. The MCU can communicate with the
DS18B20 through 1-Wire protocol, and finally read the temperature. In this experiment, we will use this temperature
sensor to measure the temperature in the current environment. The test result is ℃, ranging from -55℃ to +125℃.
We will display the test result on shell.

Working Principle
The hardware interface of the 1-Wire bus is very simple, just connect the data pin of the DS18B20 to an IO port of
the microcontroller. The timing of the 1-Wire bus is relatively complex. Many students can’t understand the timing
diagram independently here. We have encapsulated the complex timing operations in the library, and you can use the
library functions directly.

Schematic Diagram of DS18B20

This can save up to 12-bit temperature vale. In the register, save in code complement. As shown below;

168 Chapter 5. Python tutorial

keyestudio WiKi

A total of 2 bytes, LSB is the low byte, MSB is the high byte, where MSb is the high byte of the byte, LSb is the
low byte of the byte. As you can see, the binary number, the meaning of the temperature represented by each bit, is
expressed. Among them, S represents the sign bit, and the lower 11 bits are all powers of 2, which are used to represent
the final temperature. The temperature measurement range of DS18B20 is from -55 degrees to +125 degrees, and the
expression form of temperature data, S represents positive and negative temperature, and the resolution is 2, which is
0.0625.

Required Components

ESP32
Board*1

ESP32 Expansion
Board*1

Keyestudio DIY 18B20 Tempera-
ture Sensor*1

3P Dupont
Wire*1

Micro USB Ca-
ble*1

Required Components

5.2. 2. Single Sensor/Experiment Projects 169

keyestudio WiKi

Add Library
Open“Thonny”, click“This computer”→“D:”→“2. ESP32_code_MicroPython”→“lesson 37. DS18B20”.

Select“ds18x20.py”and“onewire.py”right-click and select“Upload to”waiting for the “ds18x20.py” and “onewire.py”to
be uploaded to the ESP32.

170 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

import machine, onewire, ds18x20, time

ds_pin = machine.Pin(15)

ds_sensor = ds18x20.DS18X20(onewire.OneWire(ds_pin))

roms = ds_sensor.scan()

print('Found DS devices: ', roms)

while True:

ds_sensor.convert_temp()

time.sleep_ms(750)

for rom in roms:

#print(rom)

print(ds_sensor.read_temp(rom))

time.sleep(1)

Code Explanation
1). We set the pin to GPIO15 and obtain the temperature in the unit of ℃.

2). The Shell window displays the temperature value. Ds_sensor. Read_temp (ROM) indicates the temperature value.

Test Result

5.2. 2. Single Sensor/Experiment Projects 171

keyestudio WiKi

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the
code starts executing, the shell displays the temperature of the current environment, as shown below. Press “Ctrl+C”or

click “Stop/Restart backend”to exit the program.

172 Chapter 5. Python tutorial

keyestudio WiKi

5.2.38 Project 38: XHT11 Temperature and Humidity Sensor

Description
This DHT11 temperature and humidity sensor is a composite sensor which contains a calibrated digital signal output
of the temperature and humidity.

DHT11 temperature and humidity sensor uses the acquisition technology of the digital module and temperature and
humidity sensing technology, ensuring high reliability and excellent long-term stability. It includes a resistive element
and a NTC temperature measuring device.

5.2. 2. Single Sensor/Experiment Projects 173

keyestudio WiKi

Working Principle
The communication and synchronization between the single-chip microcomputer and XHT11 adopts the single bus
data format. The communication time is about 4ms. The data is divided into fractional part and integer part.

Operation process: A complete data transmission is 40bit, high bit first out. Data format: 8bit humidity integer data +
8bit humidity decimal data + 8bit temperature integer data + 8bit temperature decimal data + 8bit checksum

8-bit checksum: 8-bit humidity integer data + 8-bit humidity decimal data + 8-bit temperature integer data + 8-bit
temperature decimal data “Add the last 8 bits of the result.

Required Components

ESP32Board*1ESP32 Expan-
sion Board*1

XHT11 Temperature and Humidity Sen-
sor*1compatible with DHT11)

3P Dupont
Wire*1

Micro USB
Cable*1

Connection Diagram

174 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

Import machine, time and dht modules.
import machine
import time
import dht

#Associate DHT11 with Pin(15).
DHT = dht.DHT11(machine.Pin(15))

Obtain temperature and humidity data once per second and print them out.
while True:

DHT.measure() # Start DHT11 to measure data once.
Call the built-in function of DHT to obtain temperature
and humidity data and print them in “Shell”.
print('temperature:',DHT.temperature(),'℃','humidity:',DHT.humidity(),'%')
time.sleep_ms(1000)

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the
code starts executing, the shell displays the temperature and humidity data of the current environment, as shown below.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2. 2. Single Sensor/Experiment Projects 175

keyestudio WiKi

176 Chapter 5. Python tutorial

keyestudio WiKi

5.2.39 Project 39: DS1307 Clock Module

Overview
This module mainly uses the real-time clock chip DS1307, which is the I2C bus interface chip that has second, minute,
hour, day, month, year and other functions as well as leap year automatic adjustment function introduced by DALLAS.
It can work independently of CPU, and won‘t’ affected by the CPU main crystal oscillator and capacitance as well as
keep accurate time. What‘s more, monthly cumulative error is generally less than 10 seconds.

The chip also has a clock protection circuit in case of main power failure and runs on a back-up battery that denies
the CPU read and write access. At the same time, it contains automatic switching control circuit of standby power
supply, so it can guarantee the accuracy of system clock in case of power failure of main power supply and other bad
environment.

Going forward, the DS1307 chip internal integration has a certain capacity, with power failure protection characteristics
of static RAM, which can be used to save some key data.

5.2. 2. Single Sensor/Experiment Projects 177

keyestudio WiKi

In
the experiment, we use the DS1307 clock module to obtain the system time and print the test results.

Working Principle
Serial real-time clock records year, month, day, hour, minute, second and week; AM and PM indicate morning and
afternoon respectively; 56 bytes of NVRAM store data; 2-wire serial port; programmable square wave output; power
failure detection and automatic switching circuit; battery current is less than 500nA.

Pins description

X1, X232.768kHz crystal terminal ;

VBAT: +3V input;

SDAserial data;

SCLserial clock;

SQW/OUTsquare waves/output drivers

Components

178 Chapter 5. Python tutorial

keyestudio WiKi

ESP32
Board*1

ESP32 Expansion
Board*1

Keyestudio DS1307 Clock
Module*1

4P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

Add Library
Open “Thonny”, click “This computer”→”D:”→”2. ESP32_code_MicroPython”→“lesson 39. DS1307 Real Time
Clock”. Select“urtc.py”right-click and select“Upload to /”waiting for the“urtc.py”to be uploaded to the ESP32.

5.2. 2. Single Sensor/Experiment Projects 179

keyestudio WiKi

Test Code

from machine import I2C, Pin
from urtc import DS1307
import utime

i2c = I2C(1,scl = Pin(22),sda = Pin(21),freq = 400000)
rtc = DS1307(i2c)

year = int(input("Year : "))
month = int(input("month (Jan --> 1 , Dec --> 12): "))
date = int(input("date : "))
day = int(input("day (1 --> monday , 2 --> Tuesday ... 0 --> Sunday): "))
hour = int(input("hour (24 Hour format): "))
minute = int(input("minute : "))
second = int(input("second : "))

now = (year,month,date,day,hour,minute,second,0)
rtc.datetime(now)

#(year,month,date,day,hour,minute,second,p1) = rtc.datetime()
while True:

DateTimeTuple = rtc.datetime()
print(DateTimeTuple[0], end = '-')
print(DateTimeTuple[1], end = '-')
print(DateTimeTuple[2], end = ' ')
print(DateTimeTuple[4], end = ':')
print(DateTimeTuple[5], end = ':')
print(DateTimeTuple[6], end = ' week:')
print(DateTimeTuple[3])
utime.sleep(1)

180 Chapter 5. Python tutorial

keyestudio WiKi

Code Explanation
rtc.datetime()Return a tuple of time. When the program is running, we set the “please input” program, run the code, it
will prompt us to input the time and date, after the input is completed, the data will be printed every second.

DateTimeTuple[0]: save years

DateTimeTuple[1]: save months

DateTimeTuple[2]: save days

DateTimeTuple[3]: save weeks

Rtc.GetDateTime().Month(): return months

DateTimeTuple[4]: save hours

DateTimeTuple[5]: save minutes

DateTimeTuple[6]: save seconds

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing, the shell will display “Year”. Then we enter year, month, day, hour, minute and second, once complete,

printed the data every second, as shown below. Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2. 2. Single Sensor/Experiment Projects 181

keyestudio WiKi

5.2.40 Project 40: ADXL345 Acceleration Sensor

Overview
In this kit, there is a DIY electronic building block ADXL345 acceleration sensor module, which uses the
ADXL345BCCZ chip. The chip is a small, thin, low-power 3-axis accelerometer with a high resolution (13 bits)
and a measurement range of ±16g that can measure both dynamic acceleration due to motion or impact as well as
stationary acceleration such as gravitational acceleration, making the device usable as a tilt sensor.

Working Principle
The ADXL345 is a complete 3-axis acceleration measurement system with a selection of measurement ranges of ±2
g, ±4 g, ±8 g or ±16 g. Its digital output data is in 16-bit binary complement format and can be accessed through an
SPI (3-wire or 4-wire) or I2C digital interface.

The sensor can measure static acceleration due to gravity in tilt detection applications, as well as dynamic acceleration
due to motion or impact. Its high resolution (3.9mg/LSB) enables measurement of tilt Angle changes of less than 1.0°.

182 Chapter 5. Python tutorial

keyestudio WiKi

Components Required

ESP32
Board*1

ESP32 Expansion
Board*1

Keyestudio ADXL345 Acceleration
Module*1

4P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

Add Library
Open“Thonny”, click“This computer”→“D:”→“2. ESP32_code_MicroPython”→“lesson 40. ADXL345”.

Select“ADXL345.py”right-click and select“Upload to /”waiting for the “ADXL345.py” to be uploaded to the ESP32.

5.2. 2. Single Sensor/Experiment Projects 183

keyestudio WiKi

Test Code

from machine import Pin
import time
from ADXL345 import adxl345

scl = Pin(22)
sda = Pin(21)
bus = 0
snsr = adxl345(bus, scl, sda)
while True:

x,y,z = snsr.readXYZ()
print('x:',x,'y:',y,'z:',z,'uint:mg')
time.sleep(0.1)

Code Explanation
Set IIC pins, select IIC0sda–>21, scl–>22then assign the value to x, y and z. The shell shows the value of x,y and zunit
is mg.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing, the shell will display the corresponding value of the three-axis acceleration in mg, as shown in the

following figure, as shown below. Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

184 Chapter 5. Python tutorial

keyestudio WiKi

5.2. 2. Single Sensor/Experiment Projects 185

keyestudio WiKi

5.2.41 Project 41: TM1650 4-Digit Tube Display

Overview
This module is mainly composed of a 0.36 inch red common cathode 4-digit digital tube, and its driver chip is TM1650.
When using it, we only need two signal lines to make the single-chip microcomputer control a 4-bitdigit tube, which
greatly saves the IO port resources of the control board.

TM1650 is a special circuit for LED (light emitting diode display) drive control. It integrates MCU input and output
control digital interface, data latch, LED drivers, keyboard scanning, brightness adjustment and other circuits.

TM1650 has stable performance, reliable quality and strong anti-interference ability.

It can be applied to the application of long-term continuous working for 24 hours.

TM1650 uses 2-wire serial transmission protocol for communication (note that this data transmission protocol is not a
standard I2C protocol). The chip can drive the digital tube and save MCU pin resources through two pins and MCU
communication.

Working Principle
TM1650 adopts IIC treaty, which uses DIO and CLK buses.

186 Chapter 5. Python tutorial

keyestudio WiKi

Data command setting: 0x48 means that we light up the digital tube, instead of enable the function of key scanning

Command display setting:
bit[6:4]set the brightness of tube display, and 000 is brightest

bit[3]set to show decimal points

bit[0]start the display of the tube display

Components

5.2. 2. Single Sensor/Experiment Projects 187

keyestudio WiKi

ESP32
Board*1

ESP32 Expansion
Board*1

Keyestudio TM1650 4-Digit Tube
Display*1

4P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

Test Code

from machine import Pin
import time

definitions for TM1650
ADDR_DIS = 0x48 #mode command
ADDR_KEY = 0x49 #read key value command

definitions for brightness
BRIGHT_DARKEST = 0
BRIGHT_TYPICAL = 2
BRIGHTEST = 7

on = 1
off = 0

number:0~9
NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6c,0x6e]
DIG = [0x6e,0x6c,0x6a,0x68]
DOT = [0,0,0,0]

(continues on next page)

188 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

clkPin = 22
dioPin = 21
clk = Pin(clkPin, Pin.OUT)
dio = Pin(dioPin, Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):
global clk,dio
for i in range(8):

if(wr_data & 0x80 == 0x80):
dio.value(1)

else:
dio.value(0)

clk.value(0)
time.sleep(0.0001)
clk.value(1)
time.sleep(0.0001)
clk.value(0)
wr_data <<= 1

return

def start():
global clk,dio
dio.value(1)
clk.value(1)
time.sleep(0.0001)
dio.value(0)
return

def ack():
global clk,dio
dy = 0
clk.value(0)
time.sleep(0.0001)
dio = Pin(dioPin, Pin.IN)
while(dio.value() == 1):

time.sleep(0.0001)
dy += 1
if(dy>5000):

break
clk.value(1)
time.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, Pin.OUT)
return

def stop():
global clk,dio
dio.value(0)
clk.value(1)

(continues on next page)

5.2. 2. Single Sensor/Experiment Projects 189

keyestudio WiKi

(continued from previous page)

time.sleep(0.0001)
dio.value(1)
return

def displayBit(bit, num):
global ADDR_DIS
if(num > 9 and bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
if(DOT[bit-1] == 1):

writeByte(NUM[num] | 0x80)
else:

writeByte(NUM[num])
ack()
stop()
return

def clearBit(bit):
if(bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
writeByte(0x00)
ack()
stop()
return

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)
return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)
return

def displayOnOFF(OnOff = 1):

(continues on next page)

190 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+OnOff
return

def displayDot(bit, OnOff):
if(bit > 4):

return
if(OnOff == 1):

DOT[bit-1] = 1;
else:

DOT[bit-1] = 0;
return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):

clearBit(_)
return

def ShowNum(num): #0~9999
displayBit(1,num%10)
if(num < 10):

clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)
clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
clearBit(4)

if(num > 999 and num < 10000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

InitDigitalTube()

while True:
#displayDot(1,on) # on or off, DigitalTube.Display(bit,number); bit=1---4 ␣

→˓number=0---9
for i in range(0,9999):

ShowNum(i)
time.sleep(0.01)

Code Explanation
clkPin = 22dioPin = 21is pin numberCLK is connected to GPIO22DIO is connected to GPIO21. We can set any two
pins at random.

5.2. 2. Single Sensor/Experiment Projects 191

keyestudio WiKi

displayBit(bit, num): show numbers at bit(1~4) bit num(0~9)

clearBit(bit): clear up bit(1~4)

setBrightness(): brightness setting
displayOnOFF() 0 means OFF, 1 means ON

displayDot(bit, OnOff) shows dots0 means OFF, 1 means ON

ShowNum(num): show integer numin the range of 0~9999

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. The 4-digit tube display will show integer from 0 to 99999, an increase of 1 for each 10ms, then start
from 0 once reaching 99999.

Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2.42 Project 42: HT16K33_8X8 Dot Matrix Module

Overview
What is the dot matrix display?

192 Chapter 5. Python tutorial

keyestudio WiKi

If we apply the previous circuit, there will be must one IO port to control only one LED. When more LED need to be
controlled, we may adopt a dot matrix.

The 8X8 dot matrix is composed of 64 light-emitting diodes, and each light-emitting diode is placed at the intersection
of the row line and the column line. Refer to the experimental schematic diagram below , when the corresponding
column is set to a high level and a certain row to low, the corresponding diode will light up. For instance, set pin 13 to
a high level and pin 9 to low, and then the first LED will light up.

In the experiment, we display icons via this dot matrix.

Working Principle
As the schematic diagram shown, to light up the LED at the first row and column, we only need to set C1 to high level
and R1 to low level. To turn on LEDs at the first row, we set R1 to low level and C1-C8 to high level.

16 IO ports are needed, which will highly waste the MCU resources.

Therefore, we designed this module, using the HT16K33 chip to drive an 8*8 dot matrix, which greatly saves the
resources of the single-chip microcomputer.

There are three DIP switches on the module, all of which are set to I2C communication address. The setting method
is shown below. A0A1 and A2 are grounded, that is, the address is 0x70.

Components

ESP32
Board*1

ESP32 Expansion
Board*1

Keyestudio HT16K338X8 Dot
Matrix*1

4P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

5.2. 2. Single Sensor/Experiment Projects 193

keyestudio WiKi

Add Library
Open “Thonny”, click “This computer” → “D:” → “2. ESP32_code_MicroPython” → “lesson 42. HT16K33 dot ma-
trix”. Select “ht16k33.py” and “ht16k33matrix.py”, right-click and select “Upload to /”, waiting for the “ht16k33.py”
and “ht16k33matrix.py” to be uploaded to the ESP32.

194 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

IMPORTS
import utime as time
from machine import I2C, Pin, RTC
from ht16k33matrix import HT16K33Matrix

CONSTANTS
DELAY = 0.01
PAUSE = 3

START
if __name__ == '__main__':

i2c = I2C(scl=Pin(22), sda=Pin(21))
display = HT16K33Matrix(i2c)
display.set_brightness(2)

Draw a custom icon on the LED
icon = b"\x00\x66\x00\x00\x18\x42\x3c\x00"
display.set_icon(icon).draw()
Rotate the icon
display.set_angle(0).draw()
time.sleep(PAUSE)

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code

starts executing. The dot matrix displays a“ smile ”pattern. Press “Ctrl+C”or click “Stop/Restart backend”to exit
the program.

5.2. 2. Single Sensor/Experiment Projects 195

keyestudio WiKi

5.2.43 Project 43: LCD_128X32_DOT Module

Description
This is a 128*32 pixel LCD module, which uses IIC communication mode and ST7567A driver chip. At the same time,
the code contains all the English letters and common symbols of the library that can be directly called. When used, we
can also set English letters and symbols to display different text sizes in our code. To make it easy to set up the pattern
display, we also provide a mold capture software that can convert a specific pattern into control code and then copy it
directly into the test code for use.

In the experiment, we will set up the display screen to display various English words, common symbols and numbers.

Working Principle

196 Chapter 5. Python tutorial

keyestudio WiKi

The module uses the IIC communication principle, the underlying functions have been encapsulated in the library
surface, we can directly call the library function, if interested, you can also go to understand the underlying driver of
the module.

Components

ESP32
Board*1

ESP32 Expansion
Board*1

Keyestudio LCD 128X32 DOT
Module*1

4P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

5.2. 2. Single Sensor/Experiment Projects 197

keyestudio WiKi

Add Library
Open “Thonny”, click “This computer” → “D:” → “2. ESP32_code_MicroPython” → “lesson 43. lcd128_32”. Select
“lcd128_32.py” and “lcd128_32_fonts.py”, right-click and select “Upload to /”, waiting for the “lcd128_32.py” and
“lcd128_32_fonts.py” to be uploaded to the ESP32.

198 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

import machine
import time
import lcd128_32_fonts
from lcd128_32 import lcd128_32

#i2c config
clock_pin = 22
data_pin = 21
bus = 0
i2c_addr = 0x3f
use_i2c = True

def scan_for_devices():
i2c = machine.I2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock_pin))
devices = i2c.scan()
if devices:

for d in devices:
print(hex(d))

else:
print('no i2c devices')

if use_i2c:
scan_for_devices()
lcd = lcd128_32(data_pin, clock_pin, bus, i2c_addr)

lcd.Clear()
lcd.Cursor(0, 7)

lcd.Display("KEYES")
lcd.Cursor(1, 0)

(continues on next page)

5.2. 2. Single Sensor/Experiment Projects 199

keyestudio WiKi

(continued from previous page)

lcd.Display("ABCDEFGHIJKLMNOPQR")
lcd.Cursor(2, 0)
lcd.Display("123456789+-*/<>=$@")
lcd.Cursor(3, 0)
lcd.Display("%^&(){}:;'|?,.~\\[]")

while True:
#scan_for_devices()
time.sleep(0.5)

Code Explanation
Scan_for_devices()
This function is an IIC addressing function; if an IIC device is identified, the IIC address of the device is printed, as
shown in the figure:

If the device is not recognized, print no i2c devices, and then report an error, as shown in the figure:

lcd.Cursor(0, 7)
In order to set the cursor function, that is, to set the position where the character is displayed on the lcd, the first
parameter is the parameter of the row, the second is the parameter of the column, then it is expressed as, the first row,
the seventh column starts to display the characters.

lcd.Display(“KEYES”)
In order to set the character content to be displayed, “KEYES” is displayed here

Test Result
Connect the wires according to the experimental wiring diagram and power on.

Click “Run current script”, the code starts executing, the first line of the 128X32LCD module displays “KEYES”,
the second line displays “ABCDEFGHIJKLMNOPQR”, the third line displays “123456789±*/<>=$@”, the fourth
line displays “%^&(){}:;’|?,.~\[]”, as shown in the following image.

200 Chapter 5. Python tutorial

keyestudio WiKi

Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.2.44 Project 44: RFID Module

Description
RFIDRFID-RC522 radio frequency module adopts a Philips MFRC522 original chip to design card reading circuit,
easy to use and low cost, suitable for equipment development and card reader development and so on.

RFID or Radio Frequency Identification system consists of two main components, a transponder/tag attached to an
object to be identified, and a transceiver also known as interrogator/Reader.

In the experiment, the data read by the card swipe module is 4 hexadecimal numbers, and we print these four hexadec-
imal numbers as strings. For example, we read the data of the IC card below: 237, 247,148,90 and the data read from
the keychain is: 76, 9, 107, 110. Different IC cards and different key chains have diverse data.

Working Principle
Radio frequency identification, the card reader is composed of a radio frequency module and a high-level magnetic field.
The Tag transponder is a sensing device, and this device does not contain a battery. It only contains tiny integrated
circuit chips and media for storing data and antennas for receiving and transmitting signals. To read the data in the tag,
first put it into the reading range of the card reader. The reader will generate a magnetic field, and because the magnetic
energy generates electricity according to Lenz’s law, the RFID tag will supply power, thereby activating the device.

5.2. 2. Single Sensor/Experiment Projects 201

keyestudio WiKi

Components Required

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIY RFID Module*1 4P Dupont Wire*1

Micro USB Cable*1 Key*1 IC Card*1

Connection Diagram

202 Chapter 5. Python tutorial

keyestudio WiKi

Add Library
Open “Thonny”, click “This computer” → “D:” → “2. ESP32_code_MicroPython” → “lesson 44. RFID RC522”.

Select “mfrc522_config.py”, “mfrc522_i2c.py” and “soft_iic.py”, right-click and select “Upload to /”, waiting for the
“mfrc522_config.py”, “mfrc522_i2c.py” and “soft_iic.py” to be uploaded to the ESP32.

5.2. 2. Single Sensor/Experiment Projects 203

keyestudio WiKi

Test Code

import machine
import time
from mfrc522_i2c import mfrc522

#i2c config
addr = 0x28
scl = 22
sda = 21

rc522 = mfrc522(scl, sda, addr)
rc522.PCD_Init()
rc522.ShowReaderDetails() # Show details of PCD - MFRC522 Card Reader details

while True:
if rc522.PICC_IsNewCardPresent():

#print("Is new card present!")
if rc522.PICC_ReadCardSerial() == True:

print("Card UID:")
print(rc522.uid.uidByte[0 : rc522.uid.size])

#time.sleep(1)

Code Explanation
mfrc522_config.py; This is a configuration file that defines some parameters and commands

mfrc522_i2c.py; Initialization and read and write functions

Soft_iic.py; It is the bottom-level read and write function of software I2C. We use the io port to simulate I2C here.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code

204 Chapter 5. Python tutorial

keyestudio WiKi

starts executing. When we make the IC card and key chain close to the RFID module, the information will be printed

out, as shown in the figure below. Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

Note: Different RFID-RC522 door cards and key chains have diverse values.

5.3 3. Comprehensive Experiments:

The previous projects are related to single sensor or module. In the following part, we will combine various sensors
and modules to create some comprehensive experiments to perform special functions.

5.3. 3. Comprehensive Experiments: 205

keyestudio WiKi

5.3.1 Project 45: Button-controlled LED

Overview
In this lesson, we will make an extension experiment with a button and an LED. When the button is pressed and low
levels are output, the LED will light up; when the button is released, the LED will go off. Then we can control a module
with another module.

Components

206 Chapter 5. Python tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Purple LED Module*1

Keyestudio DIY Button Module*1 3P Dupont Wire*2 Micro USB Cable*1

Connection Diagram

Test Code

from machine import Pin
import time

led = Pin(4, Pin.OUT) # create LED object from Pin 4,Set Pin 4 to output ␣
→˓

button = Pin(15, Pin.IN, Pin.PULL_UP) #Create button object from Pin15,Set GP15 to input

#Customize a function and name it reverseGPIO(),which reverses the output level of the␣
→˓LED
def reverseGPIO():

if led.value():
led.value(0) #Set led turn off

else:
led.value(1) #Set led turn on

try:
while True:

if not button.value():
time.sleep_ms(20)

(continues on next page)

5.3. 3. Comprehensive Experiments: 207

keyestudio WiKi

(continued from previous page)

if not button.value():
reverseGPIO()
while not button.value():

time.sleep_ms(20)
except:

pass

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing.When the button is pressed, the LED will light up, when pressed again, the LED will go off, cycle this
operation. Press “Ctrl+C”or “Stop/Restart backend”to exit the program.

5.3.2 Project 46: Alarm Experiment

Overview
In the previous experiment, we control an output module though an input module. In this lesson, we will make an
experiment that the active buzzer will emit sounds once an obstacle appears.

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Obstacle Avoidance Sensor*1

Keyestudio Active Buzzer*1 3P Dupont Wire*2 Micro USB Cable*1

208 Chapter 5. Python tutorial

keyestudio WiKi

Connection Diagram

Test Code

from machine import Pin
import time

buzzer = Pin(4, Pin.OUT)
sensor = Pin(15, Pin.IN)
while True:

buzzer.value(not(sensor.value()))
time.sleep(0.01)

Code Explanation
When an obstacle is detected, sensor.value() will return a low level signal. So when an obstacle is detected, the GPIO4
connected to the buzzer pin will output a high level signal, the buzzer will emit sounds.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the
code starts executing. The active buzzer will emit sound if detecting obstacles; otherwise, it won’t emit sound. Press

“Ctrl+C” or click “Stop/Restart backend” to exit the program.

5.3. 3. Comprehensive Experiments: 209

keyestudio WiKi

5.3.3 Project 47: Intrusion Detection

Description
In this experiment, we use a PIR motion sensor to control an active buzzer to emit sounds and the onboard LED to flash
rapidly.

Required Components

ESP32 Board*1 ESP32 Expansion Board*1 DIY PIR Motion Sensor*1 DIY Active Buzzer*1

Purple LED Module*1 3P Dupont Wire*2 Micro USB Cable*1

Connection Diagram

210 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

Import Pin and time modules.
from machine import Pin
import time

Define the pins of the Human infrared sensor,led and Active buzzer.
sensor_pir = Pin(15, Pin.IN)
led = Pin(22, Pin.OUT)
buzzer = Pin(4, Pin.OUT)

while True:
if sensor_pir.value():

print("Warning! Intrusion detected")
buzzer.value(1)
led.value(1)
time.sleep(0.2)
buzzer.value(0)
led.value(0)
time.sleep(0.2)

else:
buzzer.value(0)
led.value(0)

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. If the PIR Motion sensor detects someone moving nearby, the buzzer will emit an alarm , and the LED
will flash continuously. At the same time, the “shell” will display“Warning! Intrusion detected”.

Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.3. 3. Comprehensive Experiments: 211

keyestudio WiKi

5.3.4 Project 48: Extinguishing Robot

Description
Today we will use Arduino simulation to build an extinguishing robot that will automatically sense the fire and start the
fan. In this project we will learn how to build a very simple robot using ESP32, (detecting flames with a flame sensor,
blowing out candles with a fan) can teach us basic concepts about robotics. Once you understand the basics below, you
can build more complex robots.

Components Required

212 Chapter 5. Python tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 130 Motor*1

3P Dupont Wire*1 4P Dupont Wire*1 Micro USB Cable*1

Battery (provided by yourself)*6 Flame Sensor*1 Battery Holder*1

Connection Diagram

Test Code

Import Pin and ADCmodules.
from machine import ADC,Pin

(continues on next page)

5.3. 3. Comprehensive Experiments: 213

keyestudio WiKi

(continued from previous page)

import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(34))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

#Two pins of the moto
INA = Pin(15, Pin.OUT) #INA corresponds to IN+
INB = Pin(4, Pin.OUT) #INB corresponds to IN-

while True:
adcVal=adc.read()
print(adcVal)
if adcVal < 3000:

#open
INA.value(0)
INB.value(1)

else:
#stop
INA.value(0)
INB.value(0)

time.sleep(0.1)

Code Explanation
In the code, we set the threshold value to 3000. When the ADC value detected by the flame sensor is lower than the
threshold value, the fan will be automatically turned on; otherwise, it will be turned off. For the driving method of the
fan, please refer to the 130 Motor.

Test Result
Connect the wires according to the experimental wiring diagram and power on. Switch the DIP switch on the ESP32
expansion board to the ON end, click “Run current script”, the code starts executing. The shell prints the flame
value. When this value is less than 3000, the fan will work to blow out the fire. Basically, the flame value can be set by

yourself. Press “Ctrl+C” or click “Stop/Restart backend” to exit the program.

214 Chapter 5. Python tutorial

keyestudio WiKi

5.3.5 Project 49: Rotary Encoder control RGB

Introduction
In this lesson, we will control the LED on the RGB module to show different colors through a rotary encoder.

When designing the code, we need to divide the obtained values by 3 to get the remainders. The remainder is 0 and the
LED will become red. The remainder is 1, the LED will become green. The remainder is 2, the LED will turn blue.

Components

5.3. 3. Comprehensive Experiments: 215

keyestudio WiKi

ESP32Board*1 ESP32 Expansion
Board*1

KeyestudioCommon Cathode RGB
Module*1

KeyestudioRotary Encoder
Module*1

5P Dupont Wire*1 4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Add Library
Open “Thonny”, click “This computer” → “D:” → “2. ESP32_code_MicroPython” → “lesson 49. Encoder control
RGB”.

Select “rotary.py” and “rotary_irq_rp2.py”, right-click and select “Upload to /”, waiting for the “rotary.py” and “ro-
tary_irq_rp2.py” to be uploaded to the ESP32.

216 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

import time
from rotary_irq_rp2 import RotaryIRQ
from machine import Pin, PWM

pwm_r = PWM(Pin(0))
(continues on next page)

5.3. 3. Comprehensive Experiments: 217

keyestudio WiKi

(continued from previous page)

pwm_g = PWM(Pin(2))
pwm_b = PWM(Pin(15))

pwm_r.freq(1000)
pwm_g.freq(1000)
pwm_b.freq(1000)

def light(red, green, blue):
pwm_r.duty(red)
pwm_g.duty(green)
pwm_b.duty(blue)

SW=Pin(27,Pin.IN,Pin.PULL_UP)
r = RotaryIRQ(pin_num_clk=12,

pin_num_dt=14,
min_val=0,
reverse=False,
range_mode=RotaryIRQ.RANGE_UNBOUNDED)

while True:
val = r.value()
print(val%3)
if val%3 == 0:

light(4950, 0, 0)
elif val%3 == 1:

light(0, 4950, 0)
elif val%3 == 2:

light(0, 0, 4950)
time.sleep(0.1)

Code Explanation
In the experiment, we set the val to the remainder of Encoder_Count divided by 3. Encoder_Count is the value of the
encoder. Then we can set pin GPIO0 (red), GPIO2 (green) and GPIO15 (blue) according to remainders.

Colors of the LEDs can be controlled by remainders.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. Rotate the knob of the rotary encoder to display the reminders, which can control colors of LED(red

green blue). Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

218 Chapter 5. Python tutorial

keyestudio WiKi

5.3.6 Project 50: Rotary Potentiometer

Introduction
In the previous courses, we did experiments of breathing light and controlling LED with button. In this course, we do
these two experiments by controlling the brightness of LED through an adjustable potentiometer. The brightness of
LED is controlled by PWM values, and the range of analog values is 0 to 4095 and the PWM value range is 0-255.

After the code is set successfully, we can control the brightness of the LED on the module by rotating the potentiometer.

Required Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Purple LED*1

Keyestudio Rotary Potentiometer*1 3P Dupont Wire*2 Micro USB Cable*1

Connection Diagram

Test Code

5.3. 3. Comprehensive Experiments: 219

keyestudio WiKi

from machine import Pin,PWM,ADC
import time

pwm =PWM(Pin(15,Pin.OUT),1000)
adc=ADC(Pin(34))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_10BIT)

try:
while True:

adcValue=adc.read()
pwm.duty(adcValue)
print(adc.read())
time.sleep_ms(100)

except:
pwm.deinit()

Code Explanation
It is easy to control the brightness of the LED light by a potentiometer. Here we can find that MicroPython unifies the
value range of the ADC between 0 and 1023, and assigns values directly, which is simple and convenient.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. Rotating the potentiometer on the module can adjust the brightness of the LED on the LED module.

Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.3.7 Project 51: Smart Windows

Description

220 Chapter 5. Python tutorial

keyestudio WiKi

In life, we can see all kinds of smart products, such as smart home. Smart homes include smart curtains, smart windows,
smart TVs, smart lights, and more. In this experiment, we use a steam sensor to detect rainwater, and then achieve the
effect of closing and opening the window by a servo.

Required Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Steam Sensor*1

Servo*1 3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

Import Pin and ADC modules.
from machine import ADC,Pin,PWM
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(34))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

(continues on next page)

5.3. 3. Comprehensive Experiments: 221

keyestudio WiKi

(continued from previous page)

pwm = PWM(Pin(15))#Steering pin connected to GP15
pwm.freq(50)#20ms period, so the frequency is 50Hz
'''
Duty cycle corresponding to the Angle
0°----2.5%----25
45°----5%----51.2
90°----7.5%----77
135°----10%----102.4
180°----12.5%----128
In consideration of the error, the duty cycle is set at 1000~9000, which can smoothly␣
→˓rotate 0~180 degrees

'''
angle_0 = 25
angle_90 = 77
angle_180 = 128

while True:
adcVal=adc.read()
print(adcVal)
if adcVal > 2000:

pwm.duty(angle_0)
time.sleep(0.5)

else:
pwm.duty(angle_180)
time.sleep(0.5)

Code Explanation
We can control a servo to rotate by a threshold.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. When the sensor detects a certain amount of water, the servo rotates to achieve the effect of closing

or opening windows. Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

222 Chapter 5. Python tutorial

keyestudio WiKi

5.3.8 Project 52: Sound Activated Light

Introduction
In this lesson, we will make a smart sound activated light using a sound sensor and an LED module. When we make
a sound, the light will automatically turn on; when there is no sound, the lights will automatically turn off. How it
works? Because the sound-controlled light is equipped with a sound sensor, and this sensor converts the intensity of
external sound into a corresponding value. Then set a threshold, when the threshold is exceeded, the light will go on,
and when it is not exceeded, the light will turn off.

Components

5.3. 3. Comprehensive Experiments: 223

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Sound Sensor*1

Keyestudio Purple LED Module*1 3P Dupont Wire*2 Micro USB Cable*1

Connection Diagram

Test Code

from machine import ADC, Pin
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(34))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

led = Pin(15,Pin.OUT)

while True:
adcVal=adc.read()
print(adcVal)
if adcVal > 600:

led.value(1)
time.sleep(3)

else:
(continues on next page)

224 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

led.value(0)
time.sleep(0.1)

Code Explanation
We set the ADC threshold value to 600. If more than 600, LED will be on 3s; on the contrary, it will be off.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the
code starts executing. The shell monitor displays the corresponding volume ADC value. When the analog value of
sound is greater than 600, the LED on the LED module will light up, otherwise it will go off. Press “Ctrl+C”or click

“Stop/Restart backend”to exit the program.

5.3.9 Project 53: Fire Alarm

Description
In this experiment, we will make a fire alarm system. Just use a flame sensor to control an active buzzer to emit sounds.

Required Components

5.3. 3. Comprehensive Experiments: 225

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY Active
Buzzer*1

keyestudio DIY Flame Sen-
sor*1

Micro USB Ca-
ble*1

3P Dupont Wire*1 4P Dupont Wire*1

Connection Diagram

Test Code

from machine import Pin
import time

buzzer = Pin(15, Pin.OUT)
sensor = Pin(4, Pin.IN)

while True:
Val = sensor.value()
print(Val)
if Val == 0:

buzzer.value(1)
else:

buzzer.value(0)
time.sleep(0.5)

Code Explanation

226 Chapter 5. Python tutorial

keyestudio WiKi

This flame sensor uses an analog pin and a digital pin. When a flame is detected, the digital pin outputs a low level. In
this experiment we will use the digital port.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. When the sensor detects the flame, the external active buzzer will emit sounds, otherwise the active
buzzer will not emit sounds.

Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.3.10 Project 54: Smoke Alarm

Description

5.3. 3. Comprehensive Experiments: 227

keyestudio WiKi

In this experiment, we will make a smoke alarm by a TM16504-Digit segment module, a gas sensor and an active
buzzer.

Required Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio Active
Buzzer*1

Keyestudio TM16504-Digit Segment
Module*1

keyestudio Analog Gas
Senso*1

3P Dupont Wire*1 4P Dupont Wire*2 Micro USB Cable*1

Connection Diagram

Test Code

Import Pin and ADC modules.
from machine import ADC,Pin
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(34))
adc.atten(ADC.ATTN_11DB)

(continues on next page)

228 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

adc.width(ADC.WIDTH_12BIT)

buzzer = Pin(15, Pin.OUT)
definitions for TM1650
ADDR_DIS = 0x48 #mode command
ADDR_KEY = 0x49 #read key value command

definitions for brightness
BRIGHT_DARKEST = 0
BRIGHT_TYPICAL = 2
BRIGHTEST = 7

on = 1
off = 0

number:0~9
NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6c,0x6e]
DIG = [0x6e,0x6c,0x6a,0x68]
DOT = [0,0,0,0]

clkPin = 22
dioPin = 21
clk = Pin(clkPin, Pin.OUT)
dio = Pin(dioPin, Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):
global clk,dio
for i in range(8):

if(wr_data & 0x80 == 0x80):
dio.value(1)

else:
dio.value(0)

clk.value(0)
time.sleep(0.0001)
clk.value(1)
time.sleep(0.0001)
clk.value(0)
wr_data <<= 1

return

def start():
global clk,dio
dio.value(1)
clk.value(1)
time.sleep(0.0001)
dio.value(0)
return

def ack():

(continues on next page)

5.3. 3. Comprehensive Experiments: 229

keyestudio WiKi

(continued from previous page)

global clk,dio
dy = 0
clk.value(0)
time.sleep(0.0001)
dio = Pin(dioPin, Pin.IN)
while(dio.value() == 1):

time.sleep(0.0001)
dy += 1
if(dy>5000):

break
clk.value(1)
time.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, Pin.OUT)
return

def stop():
global clk,dio
dio.value(0)
clk.value(1)
time.sleep(0.0001)
dio.value(1)
return

def displayBit(bit, num):
global ADDR_DIS
if(num > 9 and bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
if(DOT[bit-1] == 1):

writeByte(NUM[num] | 0x80)
else:

writeByte(NUM[num])
ack()
stop()
return

def clearBit(bit):
if(bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)

(continues on next page)

230 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
writeByte(0x00)
ack()
stop()
return

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)
return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)
return

def displayOnOFF(OnOff = 1):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+OnOff
return

def displayDot(bit, OnOff):
if(bit > 4):

return
if(OnOff == 1):

DOT[bit-1] = 1;
else:

DOT[bit-1] = 0;
return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):

clearBit(_)
return

def ShowNum(num): #0~9999
displayBit(1,num%10)
if(num < 10):

clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)
clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):

(continues on next page)

5.3. 3. Comprehensive Experiments: 231

keyestudio WiKi

(continued from previous page)

displayBit(2,num//10%10)
displayBit(3,num//100%10)
clearBit(4)

if(num > 999 and num < 10000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

InitDigitalTube()

while True:
adcVal=adc.read()
print(adcVal)
ShowNum(adcVal)
if adcVal > 1000:

buzzer.value(1)
else:

buzzer.value(0)
time.sleep(0.1)

Code Explanation
Define an integer variable val to store the ADC value of the smoke sensor, and then we display the analog value in the
four-digit digital tube, and then set a threshold, and when the threshold is reached, the buzzer will sound.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. When the concentration of combustible gas exceeds the standard, the active buzzer module will give

an alarm, and the four-digit digital tube will display the concentration value. Press “Ctrl+C”or click “Stop/Restart
backend”to exit the program.

5.3.11 Project 55: Alcohol Sensor

Description
In the last experiment, we made a smoke alarm. In this experiment, we combine the active buzzer, the MQ-3 alcohol
sensor, and a four-digit digital tube to test the alcohol concentration through the alcohol sensor. Then, the concentration
to control the active buzzer alarm and the four-digit digital tube to display the concentration. So as to achieve the
simulation effect of alcohol detector.

Components Required

232 Chapter 5. Python tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion
Board*1

Active Buzzer*1 Keyestudio DIY TM1650 4-Digit Dis-
play*1

keyestudio Alcohol Sen-
sor*1

3P Dupont Wire*1 4P Dupont
Wire*2

Micro USB Cable*1

Connection Diagram

Test Code

Import Pin and ADC modules.
from machine import ADC,Pin
import time

adc=ADC(Pin(34))
adc.atten(ADC.ATTN_11DB)

(continues on next page)

5.3. 3. Comprehensive Experiments: 233

keyestudio WiKi

(continued from previous page)

adc.width(ADC.WIDTH_12BIT)

buzzer = Pin(15, Pin.OUT)
definitions for TM1650
ADDR_DIS = 0x48 #mode command
ADDR_KEY = 0x49 #read key value command

definitions for brightness
BRIGHT_DARKEST = 0
BRIGHT_TYPICAL = 2
BRIGHTEST = 7

on = 1
off = 0

number:0~9
NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6c,0x6e]
DIG = [0x6e,0x6c,0x6a,0x68]
DOT = [0,0,0,0]

clkPin = 22
dioPin = 21
clk = Pin(clkPin, Pin.OUT)
dio = Pin(dioPin, Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):
global clk,dio
for i in range(8):

if(wr_data & 0x80 == 0x80):
dio.value(1)

else:
dio.value(0)

clk.value(0)
time.sleep(0.0001)
clk.value(1)
time.sleep(0.0001)
clk.value(0)
wr_data <<= 1

return

def start():
global clk,dio
dio.value(1)
clk.value(1)
time.sleep(0.0001)
dio.value(0)
return

def ack():

(continues on next page)

234 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

global clk,dio
dy = 0
clk.value(0)
time.sleep(0.0001)
dio = Pin(dioPin, Pin.IN)
while(dio.value() == 1):

time.sleep(0.0001)
dy += 1
if(dy>5000):

break
clk.value(1)
time.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, Pin.OUT)
return

def stop():
global clk,dio
dio.value(0)
clk.value(1)
time.sleep(0.0001)
dio.value(1)
return

def displayBit(bit, num):
global ADDR_DIS
if(num > 9 and bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
if(DOT[bit-1] == 1):

writeByte(NUM[num] | 0x80)
else:

writeByte(NUM[num])
ack()
stop()
return

def clearBit(bit):
if(bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)

(continues on next page)

5.3. 3. Comprehensive Experiments: 235

keyestudio WiKi

(continued from previous page)

ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
writeByte(0x00)
ack()
stop()
return

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)
return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)
return

def displayOnOFF(OnOff = 1):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+OnOff
return

def displayDot(bit, OnOff):
if(bit > 4):

return
if(OnOff == 1):

DOT[bit-1] = 1;
else:

DOT[bit-1] = 0;
return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):

clearBit(_)
return

def ShowNum(num): #0~9999
displayBit(1,num%10)
if(num < 10):

clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)
clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):

(continues on next page)

236 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

displayBit(2,num//10%10)
displayBit(3,num//100%10)
clearBit(4)

if(num > 999 and num < 10000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

InitDigitalTube()

while True:
adcVal=adc.read()
print(adcVal)
ShowNum(adcVal)
if adcVal > 1000:

buzzer.value(1)
else:

buzzer.value(0)
time.sleep(0.1)

Code Explanation
Define an integer variable val to store the ADC value of the alcohol sensor, then we display the analog value in the
four-digit display module and set a threshold.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the
code starts executing. When different alcohol concentrations are detected, the active buzzer module will alarm, and the

four-digit digital display will show the concentration value. Press “Ctrl+C”or click “Stop/Restart backend”to exit
the program.

5.3. 3. Comprehensive Experiments: 237

keyestudio WiKi

5.3.12 Project 56: Ultrasonic Radar

Description

We know that bats use echoes to determine the direction and the location of their preys. In real life, sonar is used to
detect sounds in the water. Since the attenuation rate of electromagnetic waves in water is very high, it cannot be used
to detect signals, however, the attenuation rate of sound waves in the water is much smaller, so sound waves are most
commonly used underwater for observation and measurement.

In this experiment, we will use a speaker module, an RGB module and a 4-digit tube display to make a device for
detection through ultrasonic.

Required Components

238 Chapter 5. Python tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Ex-
pansion
Board*1

Keyestudio HC-
SR04 Ultrasonic
Sensor*1

Keyestudio 8002b
Power Amplifier*1

Keyestudio DIY Common
Cathode RGB Module *1

Keyestudio DIY
TM1650 4-Digit
Display*1

4P Dupont
Wire*3

3P Dupont Wire*1 Micro USB Ca-
ble*1

Connection Diagram

Test Code

from machine import Pin, PWM
import utime

definitions for TM1650
ADDR_DIS = 0x48 #mode command
ADDR_KEY = 0x49 #read key value command

(continues on next page)

5.3. 3. Comprehensive Experiments: 239

keyestudio WiKi

(continued from previous page)

definitions for brightness
BRIGHT_DARKEST = 0
BRIGHT_TYPICAL = 2
BRIGHTEST = 7

on = 1
off = 0

number:0~9
NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6c,0x6e]
DIG = [0x6e,0x6c,0x6a,0x68]
DOT = [0,0,0,0]

clkPin = 22
dioPin = 21
clk = Pin(clkPin, Pin.OUT)
dio = Pin(dioPin, Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):
global clk,dio
for i in range(8):

if(wr_data & 0x80 == 0x80):
dio.value(1)

else:
dio.value(0)

clk.value(0)
utime.sleep(0.0001)
clk.value(1)
utime.sleep(0.0001)
clk.value(0)
wr_data <<= 1

return

def start():
global clk,dio
dio.value(1)
clk.value(1)
utime.sleep(0.0001)
dio.value(0)
return

def ack():
global clk,dio
dy = 0
clk.value(0)
utime.sleep(0.0001)
dio = Pin(dioPin, Pin.IN)
while(dio.value() == 1):

utime.sleep(0.0001)

(continues on next page)

240 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

dy += 1
if(dy>5000):

break
clk.value(1)
utime.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, Pin.OUT)
return

def stop():
global clk,dio
dio.value(0)
clk.value(1)
utime.sleep(0.0001)
dio.value(1)
return

def displayBit(bit, num):
global ADDR_DIS
if(num > 9 and bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
if(DOT[bit-1] == 1):

writeByte(NUM[num] | 0x80)
else:

writeByte(NUM[num])
ack()
stop()
return

def clearBit(bit):
if(bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
writeByte(0x00)
ack()

(continues on next page)

5.3. 3. Comprehensive Experiments: 241

keyestudio WiKi

(continued from previous page)

stop()
return

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)
return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)
return

def displayOnOFF(OnOff = 1):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+OnOff
return

def displayDot(bit, OnOff):
if(bit > 4):

return
if(OnOff == 1):

DOT[bit-1] = 1;
else:

DOT[bit-1] = 0;
return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):

clearBit(_)
return

def ShowNum(num): #0~9999
displayBit(1,num%10)
if(num < 10):

clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)
clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
clearBit(4)

if(num > 999 and num < 10000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

(continues on next page)

242 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

pwm_r = PWM(Pin(0))
pwm_g = PWM(Pin(2))
pwm_b = PWM(Pin(15))

pwm_r.freq(1000)
pwm_g.freq(1000)
pwm_b.freq(1000)

def light(red, green, blue):
pwm_r.duty(red)
pwm_g.duty(green)
pwm_b.duty(blue)

Ultrasonic ranging, unit: cm
def getDistance(trigger, echo):

Generates a 10us square wave
trigger.value(0) #A short low level is given beforehand to ensure a clean high␣

→˓pulse:
utime.sleep_us(2)
trigger.value(1)
utime.sleep_us(10)#After pulling high, wait 10 microseconds and immediately set it␣

→˓to low
trigger.value(0)

while echo.value() == 0: #Establish a while loop to detect whether the echo pin␣
→˓value is 0 and record the time at that time

start = utime.ticks_us()
while echo.value() == 1: #Establish a while loop to check whether the echo pin value␣

→˓is 1 and record the time at that time
end = utime.ticks_us()

d = (end - start) * 0.0343 / 2 #The travel time of the sound wave x the speed of␣
→˓sound (343.2 m/s, 0.0343 cm/microsecond), and the distance back and forth divided by 2.
return d

set the pin
trigger = Pin(13, Pin.OUT)
echo = Pin(14, Pin.IN)

buzzer = PWM(Pin(18))
def playtone(frequency):

buzzer.duty(1000)
buzzer.freq(frequency)

def bequiet():
buzzer.duty(0)

main program
InitDigitalTube()
while True:

distance = int(getDistance(trigger, echo))
ShowNum(distance)

(continues on next page)

5.3. 3. Comprehensive Experiments: 243

keyestudio WiKi

(continued from previous page)

if distance <= 10:
playtone(880)
utime.sleep(0.1)
bequiet()
light(1023, 0, 0)

elif distance <= 20:
playtone(532)
utime.sleep(0.2)
bequiet()
light(0, 0, 1023)

else:
light(0, 1023, 0)

Code Explanation
We set sound frequency and light color by adjusting different distance range.

We can adjust the distance range in the code.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. When the ultrasonic sensor detects different distances, the buzzer will produce different frequencies
of sound(within 20 cm), the RGB will show different colors, and the measured distances are displayed on the 4-digit

tube display. Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

244 Chapter 5. Python tutorial

keyestudio WiKi

5.3.13 Project 57: IR Remote Control

Introduction
In the previous experiments, we learned how to turn on/off the LED and adjust its brightness via PWM and print the but-
ton value of the IR remote control in the Shell window. Herein, we use an infrared remote control to turn on/off an
LED.

Components

5.3. 3. Comprehensive Experiments: 245

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY Purple LED Mod-
ule*1

Keyestudio DIY IR Re-
ceiver*1

Micro USB Ca-
ble*1

IR Remote Control*1 3P Dupont Wire*2

Connection Diagram

Test Code

import time
from machine import Pin

led = Pin(4, Pin.OUT)
ird = Pin(15,Pin.IN)

act = {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2": "LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3
→˓": "LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",

"4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5": "LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6
→˓": "LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

"7": "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8": "LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9
→˓": "LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

"0": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up": "LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH",
→˓"Down": "LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",

(continues on next page)

246 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

"Left": "LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":
→˓"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok": "LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",

"*": "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#": "LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read_ircode(ird):
wait = 1
complete = 0
seq0 = []
seq1 = []

while wait == 1:
if ird.value() == 0:

wait = 0
while wait == 0 and complete == 0:

start = time.ticks_us()
while ird.value() == 0:

ms1 = time.ticks_us()
diff = time.ticks_diff(ms1,start)
seq0.append(diff)
while ird.value() == 1 and complete == 0:

ms2 = time.ticks_us()
diff = time.ticks_diff(ms2,ms1)
if diff > 10000:

complete = 1
seq1.append(diff)

code = ""
for val in seq1:

if val < 2000:
if val < 700:

code += "L"
else:

code += "H"
print(code)
command = ""
for k,v in act.items():

if code == v:
command = k

if command == "":
command = code

return command

flag = False
while True:
global flag

command = read_ircode(ird)
print(command, end = " ")
print(flag, end = " ")
if command == "Ok":

if flag == True:
led.value(1)
flag = False

(continues on next page)

5.3. 3. Comprehensive Experiments: 247

keyestudio WiKi

(continued from previous page)

print("led on")
else:

led.value(0)
flag = True
print("led off")

time.sleep(0.1)

Code Explanation
We define a boolean variable. There are two boolean variables. true (true) or false (false).

When we press the OK button, the value of infrared reception is OK. At this time, we need to set a boolean variable
flag. When the flag is true (true), the LED is turned on, and when it is false (false), the LED is turned off and turned
on. After the LED is on and set it to false. We press the OK key, the LED will be off.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the code
starts executing. Press the OK button of the remote, the LED will be on, press it again, the LED will be off.

Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

248 Chapter 5. Python tutorial

keyestudio WiKi

5.3. 3. Comprehensive Experiments: 249

keyestudio WiKi

5.3.14 Project 58: Heat Dissipation Device

250 Chapter 5. Python tutorial

keyestudio WiKi

Description
We will use a temperature sensor and some modules to make a smart cooling device in this experiment. When the
ambient temperature is higher than a certain value, the motor is turned on, thereby reducing the ambient temperature
and achieving the heat dissipation effect. Then display the temperature value in the four-digit segment display.

Required Components

ESP32 Board*1 ESP32 Expansion Board*1 keyestudio 130
Motor*1

TM1650 4-Digit Segment
Display*1

Keyestudio 18B20 Temperature
Sensor*1

3P Dupont Wire*1 4P Dupont
Wire*2

Micro USB Cable*1

Battery Holder*1 Battery(provide for your-
self)*6

Connection Diagram

5.3. 3. Comprehensive Experiments: 251

keyestudio WiKi

Add Library
Open“Thonny”, click“This computer”→“D:”→“2. ESP32_code_MicroPython”→“lesson 58. heat abstractor”.

Select“ds18x20.py”and“ds18x20.py”right-click and select “Upload to/”waiting for the
“ds18x20.py”and“ds18x20.py”to be uploaded to the ESP32.

252 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

from machine import Pin
import machine, onewire, ds18x20, time

ds_pin = machine.Pin(13)

ds_sensor = ds18x20.DS18X20(onewire.OneWire(ds_pin))
(continues on next page)

5.3. 3. Comprehensive Experiments: 253

keyestudio WiKi

(continued from previous page)

roms = ds_sensor.scan()

#Two pins of the motor
INA = Pin(15, Pin.OUT) #INA corresponds to IN+
INB = Pin(4, Pin.OUT)#INB corresponds to IN-
definitions for TM1650
ADDR_DIS = 0x48 #mode command
ADDR_KEY = 0x49 #read key value command

definitions for brightness
BRIGHT_DARKEST = 0
BRIGHT_TYPICAL = 2
BRIGHTEST = 7

on = 1
off = 0

number:0~9
NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6c,0x6e]
DIG = [0x6e,0x6c,0x6a,0x68]
DOT = [0,0,0,0]

clkPin = 22
dioPin = 21
clk = Pin(clkPin, Pin.OUT)
dio = Pin(dioPin, Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):
global clk,dio
for i in range(8):

if(wr_data & 0x80 == 0x80):
dio.value(1)

else:
dio.value(0)

clk.value(0)
time.sleep(0.0001)
clk.value(1)
time.sleep(0.0001)
clk.value(0)
wr_data <<= 1

return

def start():
global clk,dio
dio.value(1)
clk.value(1)
time.sleep(0.0001)
dio.value(0)

(continues on next page)

254 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

return

def ack():
global clk,dio
dy = 0
clk.value(0)
time.sleep(0.0001)
dio = Pin(dioPin, Pin.IN)
while(dio.value() == 1):

time.sleep(0.0001)
dy += 1
if(dy>5000):

break
clk.value(1)
time.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, Pin.OUT)
return

def stop():
global clk,dio
dio.value(0)
clk.value(1)
time.sleep(0.0001)
dio.value(1)
return

def displayBit(bit, num):
global ADDR_DIS
if(num > 9 and bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
if(DOT[bit-1] == 1):

writeByte(NUM[num] | 0x80)
else:

writeByte(NUM[num])
ack()
stop()
return

def clearBit(bit):
if(bit > 4):

return
start()

(continues on next page)

5.3. 3. Comprehensive Experiments: 255

keyestudio WiKi

(continued from previous page)

writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
writeByte(0x00)
ack()
stop()
return

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)
return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)
return

def displayOnOFF(OnOff = 1):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+OnOff
return

def displayDot(bit, OnOff):
if(bit > 4):

return
if(OnOff == 1):

DOT[bit-1] = 1;
else:

DOT[bit-1] = 0;
return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):

clearBit(_)
return

def ShowNum(num): #0~9999
displayBit(1,num%10)
if(num < 10):

clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)

(continues on next page)

256 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
clearBit(4)

if(num > 999 and num < 10000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

InitDigitalTube()
print('Found DS devices: ', roms)

while True:
ds_sensor.convert_temp()
time.sleep_ms(750)
for rom in roms:

value = ds_sensor.read_temp(rom)
print(value)
ShowNum(int(value))
if value > 28:

INA.value(0)
INB.value(1)

else:
INA.value(0)
INB.value(0)

Code Explanation
The setting of variables and the storage of detection values are the same as what we learned earlier. We also set a
temperature threshold and control the rotation of the motor when the threshold is exceeded, and then we use the digital
tube to display the temperature value.

Test Result
Connect the wires according to the experimental wiring diagram and power on. Switch the DIP switch on the ESP32
expansion board to the ON end. Click “Run current script”, the code starts executing. We can see the temperature of
the current environment (unit is Celsius) on the four-digit segment display, as shown in the figure below. If this value

exceeds the value we set, the fan will rotate to dissipate heat. Press“Ctrl+C”or click “Stop/Restart backend”to exit
the program.

5.3. 3. Comprehensive Experiments: 257

keyestudio WiKi

5.3.15 Project 59: Intelligent Entrance Guard System

Description
In this project, we use the RFID522 card swiping module and the servo to set up an intelligent access control system.
The principle is very simple.We use RFID522 swipe card module, an IC card or key card to unlock.

Required Components

ESP32 Board*1 ESP32 Expansion Board*1 Key*1 IC Card*1

Keyestudio RFID Module*1 Servo*1 4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

258 Chapter 5. Python tutorial

keyestudio WiKi

Add Library
Open “Thonny”, click “This computer” → “D:” → “2. ESP32_code_MicroPython” → “lesson 59. Intelligent access
control”. Select “mfrc522_config.py”, “mfrc522_i2c.py” and “soft_iic.py”, right-click and select “Upload to /”, waiting
for the “mfrc522_config.py”, “mfrc522_i2c.py” and “soft_iic.py” to be uploaded to the ESP32.

5.3. 3. Comprehensive Experiments: 259

keyestudio WiKi

Test Code
Note: Different RFID-RC522 modules, ID cards and keys may different uid1 values and uid2 values.

The uID1 and UID2 values of the white card and key chain read by your RRFID RC522 module can be replaced by
the corresponding values in the program code. If not, click “Run current script” to run the code may cause your own
white card and key chain to fail to control the servo.

For example: You can replace the UID1 and UID2 values In the program code

260 Chapter 5. Python tutorial

keyestudio WiKi

with your own white card and key chain values.

from machine import Pin, PWM
import time
from mfrc522_i2c import mfrc522

pwm = PWM(Pin(15))
pwm.freq(50)

'''
Duty cycle corresponding to the Angle
Duty cycle corresponding to the Angle
0°----2.5%----25
45°----5%----51.2
90°----7.5%----77
135°----10%----102.4
180°----12.5%----128
'''
angle_0 = 25
angle_90 = 77
angle_180 = 128

#i2c config
addr = 0x28
scl = 22
sda = 21

rc522 = mfrc522(scl, sda, addr)
rc522.PCD_Init()
rc522.ShowReaderDetails() # Show details of PCD - MFRC522 Card Reader details

uid1 = [237, 247, 148, 90]
uid2 = [76, 9, 107, 110]

pwm.duty(angle_180)
time.sleep(1)

while True:
if rc522.PICC_IsNewCardPresent():

print("Is new card present!")
if rc522.PICC_ReadCardSerial() == True:

print("Card UID:", end=' ')
print(rc522.uid.uidByte[0 : rc522.uid.size])
if rc522.uid.uidByte[0 : rc522.uid.size] == uid1 or rc522.uid.uidByte[0 :␣

→˓rc522.uid.size] == uid2:
pwm.duty(angle_0)

else :
pwm.duty(angle_180)

time.sleep(500)from machine import Pin, PWM
import time
from mfrc522_i2c import mfrc522

(continues on next page)

5.3. 3. Comprehensive Experiments: 261

keyestudio WiKi

(continued from previous page)

pwm = PWM(Pin(15))
pwm.freq(50)

'''
Duty cycle corresponding to the Angle
Duty cycle corresponding to the Angle
0°----2.5%----25
45°----5%----51.2
90°----7.5%----77
135°----10%----102.4
180°----12.5%----128
'''
angle_0 = 25
angle_90 = 77
angle_180 = 128

#i2c config
addr = 0x28
scl = 22
sda = 21

rc522 = mfrc522(scl, sda, addr)
rc522.PCD_Init()
rc522.ShowReaderDetails() # Show details of PCD - MFRC522 Card Reader details

uid1 = [237, 247, 148, 90]
uid2 = [76, 9, 107, 110]

pwm.duty(angle_180)
time.sleep(1)

while True:
if rc522.PICC_IsNewCardPresent():

print("Is new card present!")
if rc522.PICC_ReadCardSerial() == True:

print("Card UID:", end=' ')
print(rc522.uid.uidByte[0 : rc522.uid.size])
if rc522.uid.uidByte[0 : rc522.uid.size] == uid1 or rc522.uid.uidByte[0 :␣

→˓rc522.uid.size] == uid2:
pwm.duty(angle_0)

else :
pwm.duty(angle_180)

time.sleep(500)

Code Explanation
In the previous experiment, our card swipe module has tested the information of IC card and key. Then we use this
corresponding information to control the door.

Test Result

Connect the wires according to the experimental wiring diagram and power on. Click “Run current script”, the
code starts executing. When we use the IC card or blue key to swipe the card, the shell displays the card and the key

262 Chapter 5. Python tutorial

keyestudio WiKi

information , at the same time, the servo rotates to the corresponding angle to simulate opening the door.

Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.3.16 Project 60WIFI Station Mode

Description
ESP32 has three different WiFi modes: Station mode, AP mode and AP+Station mode. All WiFi programming projects
must be configured with WiFi running mode before using, otherwise the WiFi cannot be used. In this project, we are
going to learn the WiFi Station mode of the ESP32.

Components

USB Cable x1 ESP32*1

Wiring Diagram
Plug the ESP32 to the USB port of your PC

Component Knowledge
Station mode
When setting Station mode, the ESP32 is taken as a WiFi client. It can connect to the router network and communicate
with other devices on the router via a WiFi connection. As shown in the figure below, the PC and the router have been
connected. If the ESP32 wants to communicate with the PC, the PC and the router need to be connected.

5.3. 3. Comprehensive Experiments: 263

keyestudio WiKi

Test Code

264 Chapter 5. Python tutorial

keyestudio WiKi

import time
import network # Import network module.

ssidRouter = 'ChinaNet-2.4G-0DF0' # Enter the router name
passwordRouter = 'ChinaNet@233' # Enter the router password

def STA_Setup(ssidRouter,passwordRouter):
print("Setup start")
sta_if = network.WLAN(network.STA_IF) # Set ESP32 in Station mode.
if not sta_if.isconnected():

print('connecting to',ssidRouter)
Activate ESP32’s Station mode, initiate a connection request to the router and enter␣
→˓the password to connect.

sta_if.active(True)
sta_if.connect(ssidRouter,passwordRouter)

#Wait for ESP32 to connect to router until they connect to each other successfully. ␣
→˓

while not sta_if.isconnected():
pass

Print the IP address assigned to ESP32-WROVER in “Shell”.
print('Connected, IP address:', sta_if.ifconfig())
print("Setup End")

try:
STA_Setup(ssidRouter,passwordRouter)

except:
sta_if.disconnect()

Test Result
Since the router name and password are different in various places, so before running the code, the user needs to enter

5.3. 3. Comprehensive Experiments: 265

keyestudio WiKi

the correct router name and password in the red box shown above.

After entering the correct router name and password, click “Run current script”, the code will start executing.

The Shell monitor will print the IP address of the ESP32 when connecting the ESP32 to your router.

5.3.17 Project 61WIFI AP Mode

Description
In this project, we are going to learn the WiFi AP mode of the ESP32.

Components

USB Cable x1 ESP32*1

Wiring Diagram
Plug the ESP32 mainboard to the USB port of your PC

Component Knowledge
AP Mode:
When setting AP mode, a hotspot network will be created, waiting for other WiFi devices to connect. As shown below;

Take the ESP32 as the hotspot, if a phone or PC needs to communicate with the ESP32, it must be connected to the
ESP32’s hotspot. Communication is only possible after a connection is established via the ESP32.

266 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

5.3. 3. Comprehensive Experiments: 267

keyestudio WiKi

import network #Import network module.

#Enter correct router name and password.
ssidAP = 'ESP32_Wifi' #Enter the router name
passwordAP = '12345678' #Enter the router password

local_IP = '192.168.1.147'
gateway = '192.168.1.1'
subnet = '255.255.255.0'
dns = '8.8.8.8'

#Set ESP32 in AP mode.
ap_if = network.WLAN(network.AP_IF)

def AP_Setup(ssidAP,passwordAP):
ap_if.ifconfig([local_IP,gateway,subnet,dns])
print("Setting soft-AP ... ")
ap_if.config(essid=ssidAP,authmode=network.AUTH_WPA_WPA2_PSK, password=passwordAP)
ap_if.active(True)
print('Success, IP address:', ap_if.ifconfig())
print("Setup End\n")

try:
AP_Setup(ssidAP,passwordAP)

except:
print("Failed, please disconnect the power and restart the operation.")

(continues on next page)

268 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

ap_if.disconnect()

Test Result
You can modify the AP name and password or keep them unchanged.

Click “Run current script”, the code will start executing. Open the AP function of the ESP32, the Shell monitor
will print the information

Turn on your phone’s WiFi search function, then you can see the ssid_AP which is called “ESP32_Wifi” in this code.
You can enter the password “12345678” to connect it, or you can modify its AP name and password by code.

5.3.18 Project 62WIFI AP+Station Mode

Description
In this project, we are going to learn the AP+Station mode of the ESP32.

Components

5.3. 3. Comprehensive Experiments: 269

keyestudio WiKi

USB Cable x1 ESP32*1

Wiring Diagram
Plug the ESP32 mainboard to the USB port of your PC

Component Knowledge
AP+Station mode
In addition to the AP mode and the Station mode, AP+Station mode can be used at the same time. Turn on the Station
mode of the ESP32, connect it to the router network, and it can communicate with the Internet through the router. Then
turn on the AP mode to create a hotspot network. Other WiFi devices can be connected to the router network or the
hotspot network to communicate with the ESP32.

Test Code

270 Chapter 5. Python tutorial

keyestudio WiKi

import network #Import network module.

ssidRouter = 'ChinaNet-2.4G-0DF0' #Enter the router name
passwordRouter = 'ChinaNet@233' #Enter the router password

ssidAP = 'ESP32_Wifi'#Enter the AP name
passwordAP = '12345678' #Enter the AP password

local_IP = '192.168.4.147'
gateway = '192.168.1.1'
subnet = '255.255.255.0'
dns = '8.8.8.8'

sta_if = network.WLAN(network.STA_IF)
ap_if = network.WLAN(network.AP_IF)

def STA_Setup(ssidRouter,passwordRouter):
print("Setting soft-STA ... ")
if not sta_if.isconnected():

print('connecting to',ssidRouter)
sta_if.active(True)
sta_if.connect(ssidRouter,passwordRouter)
while not sta_if.isconnected():

(continues on next page)

5.3. 3. Comprehensive Experiments: 271

keyestudio WiKi

(continued from previous page)

pass
print('Connected, IP address:', sta_if.ifconfig())
print("Setup End")

def AP_Setup(ssidAP,passwordAP):
ap_if.ifconfig([local_IP,gateway,subnet,dns])
print("Setting soft-AP ... ")
ap_if.config(essid=ssidAP,authmode=network.AUTH_WPA_WPA2_PSK, password=passwordAP)
ap_if.active(True)
print('Success, IP address:', ap_if.ifconfig())
print("Setup End\n")

try:
AP_Setup(ssidAP,passwordAP)
STA_Setup(ssidRouter,passwordRouter)

except:
sta_if.disconnect()
ap_if.idsconnect()

Test Result
Before running the code, you need to modify ssidRouter, passwordRouter, ssidAP, and passwordAP. After making sure
that the code is modified correctly, click “Run current script” and the “Shell” window will display the following:

Then you can see the ssid_A on the ESP32

272 Chapter 5. Python tutorial

keyestudio WiKi

5.3.19 Project 63: Comprehensive Experiment

Introduction
We did a lot of experiments, and for each one we needed to re-upload the code, so can we achieve different functions
through an experiment? In this experiment, we will use an external button module to achieve different functions.

Components Required

5.3. 3. Comprehensive Experiments: 273

keyestudio WiKi

ESP32
Board*1

ESP32 Ex-
pansion
Board*1

Keyestudio
DIY Purple
LED Module*1

Keyestudio Button
Module*1

Keyestudio Rotary
Potentiometer*1

Keyestudio Ob-
stacle Avoidance
Sensor*1

Keyestudio
Line Track-
ing Sensor*1

Keyestudio
DIY Joystick
Module*1

Keyestudio
HC-SR04 Ul-
trasonic sensor
*1

Keyestudio DIY
Common Cathode
RGB Module *1

Keyestudio XHT11
Temperature and
Humidity Sensor *1

Keyestudio
ADXL345
Acceleration
Sensor*1

Micro USB
Cable*1

3P Dupont
Wire*6

4P Dupont
Wire*3

5P Dupont Wire*1

Wiring Diagram

274 Chapter 5. Python tutorial

keyestudio WiKi

Test Code

from machine import ADC, Pin, PWM
import time
import machine
import random
import dht
from ADXL345 import adxl345

scl = Pin(22)
sda = Pin(21)
bus = 0
snsr = adxl345(bus, scl, sda)

pwm_r = PWM(Pin(4))
pwm_g = PWM(Pin(0))
pwm_b = PWM(Pin(2))

(continues on next page)

5.3. 3. Comprehensive Experiments: 275

keyestudio WiKi

(continued from previous page)

pwm_r.freq(1000)
pwm_g.freq(1000)
pwm_b.freq(1000)

DHT = dht.DHT11(machine.Pin(15))

potentiometer_adc=ADC(Pin(33))
potentiometer_adc.atten(ADC.ATTN_11DB)
potentiometer_adc.width(ADC.WIDTH_12BIT)

button = Pin(23, Pin.IN)
led = PWM(Pin(5))
led.freq(1000)

tracking = Pin(14, Pin.IN, Pin.PULL_UP)

button_z=Pin(32,Pin.IN,Pin.PULL_UP)
rocker_x=ADC(Pin(35))
rocker_y=ADC(Pin(34))
rocker_x.atten(ADC.ATTN_11DB)
rocker_y.atten(ADC.ATTN_11DB)
rocker_x.width(ADC.WIDTH_12BIT)
rocker_y.width(ADC.WIDTH_12BIT)

avoid = Pin(27, Pin.IN)
Set ultrasonic pins
trigger = Pin(13, Pin.OUT)
echo = Pin(12, Pin.IN)

def light(red, green, blue):
pwm_r.duty(red)
pwm_g.duty(green)
pwm_b.duty(blue)

Ultrasonic ranging, unit: cm
def getDistance(trigger, echo):

Generates a 10us square wave
trigger.value(0) #A short low level is given beforehand to ensure a clean high␣

→˓pulse:
time.sleep_us(2)
trigger.value(1)
time.sleep_us(10)#After pulling high, wait 10 microseconds and immediately set it to␣

→˓low
trigger.value(0)

while echo.value() == 0: #Establish a while loop to detect whether the echo pin␣
→˓value is 0 and record the time at that time

start = time.ticks_us()
while echo.value() == 1: #Establish a while loop to check whether the echo pin value␣

→˓is 1 and record the time at that time
end = time.ticks_us()

(continues on next page)

276 Chapter 5. Python tutorial

keyestudio WiKi

(continued from previous page)

d = (end - start) * 0.0343 / 2 #The travel time of the sound wave x the speed of␣
→˓sound (343.2 m/s, 0.0343 cm/microsecond), and the distance back and forth divided by 2
return d

keys = 0
nums = 0
print(keys % 8)
def toggle_handle(pin):

global keys
keys += 1
print(keys % 7)

button.irq(trigger = Pin.IRQ_FALLING, handler = toggle_handle)

def showRGB():
R = random.randint(0,1023)
G = random.randint(0,1023)
B = random.randint(0,1023)
light(R, G, B)
time.sleep(0.3)

def showxht11():
DHT.measure()
print('temperature:',DHT.temperature(),'℃','humidity:',DHT.humidity(),'%')
time.sleep(1)

def showtracking():
if tracking.value() == 0:

print("0 White") #Press to print the corresponding information.
else:

print("1 Black")
time.sleep(0.1) #delay 0.1s

def showJoystick():
B_value = button_z.value()
X_value = rocker_x.read()
Y_value = rocker_y.read()
print("button:", end = " ")
print(B_value, end = " ")
print("X:", end = " ")
print(X_value, end = " ")
print("Y:", end = " ")
print(Y_value)
time.sleep(0.1)

def adjustLight():
pot_value = potentiometer_adc.read()
print(pot_value)
led.duty(pot_value)
time.sleep(0.1)

def showAvoid():
if avoid.value() == 0:

(continues on next page)

5.3. 3. Comprehensive Experiments: 277

keyestudio WiKi

(continued from previous page)

print("There are obstacles")
else:

print("All going well")
time.sleep(0.1)

def showDistance():
distance = getDistance(trigger, echo)
print("The distance is {:.2f} cm".format(distance))
time.sleep(0.1)

def showADXL345():
x,y,z = snsr.readXYZ()
print('x:',x,'y:',y,'z:',z,'uint:mg')
time.sleep(0.1)

while True:
nums = keys % 8 #number of keystrokes mod 7 to get 0, 1, 2, 3, 4, 5, 6
if nums == 0: #According to RGB

showRGB()
elif nums == 1: #Displays the high and low level of the tracking sensor

showtracking()
elif nums == 2: #Display temperature and humidity

showxht11()
elif nums == 3: #Displays the rocker value

showJoystick()
elif nums == 4: #The potentiometer adjusts the LED

adjustLight()
elif nums == 5: #Display obstacle information

showAvoid()
elif nums == 6: #Display ultrasonic ranging value

showDistance()
elif nums == 7: #Display ADXL345_x/y/z value

showADXL345()

Code Explanation
Calculate how many times the button is pressed, divide it by 8, and get the remainder which is 0, 1 2, 3, 4, 5 , 6 and
7. According to different remainders, construct five unique functions to control the experiment and realize different
functions.

We add adxl345 library files in this project.

Following the instructions, we can add or remove sensors/modules in the wiring, and then change the experimental
function in the code.

Test Result
Connect the wires according to the wiring diagram, use the USB to power on, and then click run the test code. At
the beginning, the number of keys is 0, the remainder is 0, and the four lamp beads on the RGB module flash with
random colors.

278 Chapter 5. Python tutorial

keyestudio WiKi

Press the button, the RGB stops flashing, press once, the remainder is the function of the experiment is to track the
sensor according to black and white objects read high and low levels, the following information is displayed.

Press the key twice, the time of pressing buttons is 2 and the remainder is 2. Read temperature and humidity values.
As shown below;

Press the key again, the time of pressing buttons is 3 and the remainder is 3. Read digital values at x, y and z axis of
the joystick module. As shown below;

5.3. 3. Comprehensive Experiments: 279

keyestudio WiKi

Press the key for the fourth time, the remainder is 4. Then the potentiometer can adjust the PWM value at the GPI05
port to control LED brightness of the purple LED;

Press the key for the fifth time, the remainder is 5. Then the obstacle avoidance sensor can detect obstacles, as shown
below;

Press the key for the sixth time, the remainder is 6. Then the ultrasonic sensor can detect distance away from obstacles,
as shown below;

280 Chapter 5. Python tutorial

keyestudio WiKi

Press the key for seventh time and the remainder is 7. The shell will print out the acceleration value;

Press the key for eighth time and the remainder is 0. Then the RGB will flash. If you press keys incessantly, remainders
will change in a loop way. So does functions.

Press “Ctrl+C”or click “Stop/Restart backend”to exit the program.

5.3. 3. Comprehensive Experiments: 281

keyestudio WiKi

282 Chapter 5. Python tutorial

CHAPTER

SIX

ARDUINO TUTORIAL

6.1 1. Get started with Arduino C:

6.1.1 1. Windows System

1.1 Installing Arduino IDE:

When you get control board, you need to download Arduino IDE and driver firstly.

You could download Arduino IDE from the official website: https://www.arduino.cc/, click the “SOFTWARE”on the
browse bar, click “DOWNLOADS” to enter download page, as shown below:

283

https://www.arduino.cc/

keyestudio WiKi

There are various versions of IDE for Arduino. Just download a version compatible with your system. Here we will
show you how to download and install the windows version of Arduino IDE.

284 Chapter 6. Arduino tutorial

keyestudio WiKi

There are two versions of IDE for Windows system: Windows Win7 and newer and Windows ZIP file. The former
needs to install manually, while the latter can be directly downloaded, without the need of installing it manually.

You just need to click “JUST DOWNLOAD”.

After the Arduino is downloaded, click “I Agree” to continue installing.

6.1. 1. Get started with Arduino C: 285

keyestudio WiKi

Click “Next”.

Then click “Install”.

286 Chapter 6. Arduino tutorial

keyestudio WiKi

If the following page appears, click “Install”.

6.1. 1. Get started with Arduino C: 287

keyestudio WiKi

1.2 Install a driver on Windows

If you have installed the driver, just skip it.

Before using the ESP32 board, you must install a driver, otherwise it will not communicate with computer.

Unlike the USB series chip (ATMEGA8U2) of the Arduino UNO R3, the ESP32 board is used the CP2102 chip USB
series chip and USB type C interface.

The driver of the CP2102 chip is included in 1.8.0 version and newer version of Arduino IDE. Usually, you connect the
board to the computer and wait for Windows to begin its driver installation process. After a few moments, the process
will succeed.

Right click “Computer”—– Click “Properties”—–Click “Device Manager”. Look under Ports (COM & LPT) or
other devices, The driver of CP2102 is installed successfully. As shown below:

288 Chapter 6. Arduino tutorial

keyestudio WiKi

If the driver installation process fail, you need to install the driver manually.

Note:
1). Please make sure that your IDE is updated to 1.8.0 or newer version.

2). If the version of Arduino IDE you download is below 1.8, you should download the driver of CP2102 and install it
manually.

Link to download the driver of CP2102 : https://fs.keyestudio.com/CP2102-WIN

To install the drive manually, open the device manager of computer. A yellow exclamation mark means that the CP2102
driver installation failed.

6.1. 1. Get started with Arduino C: 289

https://fs.keyestudio.com/CP2102-WIN

keyestudio WiKi

Double-click and click “ Update drive. . .”

290 Chapter 6. Arduino tutorial

keyestudio WiKi

Click “Browse my computer for drivers” for updated driver software.

6.1. 1. Get started with Arduino C: 291

keyestudio WiKi

There is a DRIVERS folder in Arduino software installed package), open driver folder and you can see
the driver of CP210X series chips.

Click “Browse”, then find the driver folder, or you could enter “driver”to search in rectangular box, then click “Next”,

292 Chapter 6. Arduino tutorial

keyestudio WiKi

6.1. 1. Get started with Arduino C: 293

keyestudio WiKi

Open device manager, you will find the yellow exclamation mark disappear. The driver of CP2102 is installed suc-
cessfully.

294 Chapter 6. Arduino tutorial

keyestudio WiKi

1.3. Install the ESP32 on Arduino IDE

Note: you need to download Arduino IDE 1.8.5 or advanced version to install the ESP32.

1). Click to open Arduino IDE

6.1. 1. Get started with Arduino C: 295

keyestudio WiKi

2). Click “File” → “Preferences”copy the website address https://dl.espressif.com/dl/package_esp32_index.json in
the “Additional Boards Manager URLs:” and click “OK”

296 Chapter 6. Arduino tutorial

https://dl.espressif.com/dl/package_esp32_index.json

keyestudio WiKi

6.1. 1. Get started with Arduino C: 297

keyestudio WiKi

3). Click “Tools” → “Board:” then click “Boards Manager. . .” to enter “Boards Manager”. Enter “ESP32” as
follows, then click “Install”.

298 Chapter 6. Arduino tutorial

keyestudio WiKi

4). After installing, click “Close”.

1.4. Arduino IDE Setting:

1). Click icon to pen Arduino IDE.

6.1. 1. Get started with Arduino C: 299

keyestudio WiKi

2). When downloading the sketch to the board, you must select the correct name of Arduino board that matches the
board connected to your computer. As shown below;

(Note: we use the ESP32 board in this tutorial; therefore, we select ESP32**)**

300 Chapter 6. Arduino tutorial

keyestudio WiKi

6.1. 1. Get started with Arduino C: 301

keyestudio WiKi

3). Set the board type as follows;

302 Chapter 6. Arduino tutorial

keyestudio WiKi

4). Then select the correct COM port (you can see the corresponding COM port after the driver is successfully installed).

6.1. 1. Get started with Arduino C: 303

keyestudio WiKi

304 Chapter 6. Arduino tutorial

keyestudio WiKi

6.1. 1. Get started with Arduino C: 305

keyestudio WiKi

A- Used to verify whether there is any compiling mistakes or not.

B- Used to upload the sketch to your Arduino board.

C- Used to create shortcut window of a new sketch.

D- Used to directly open an example sketch.

E- Used to save the sketch.

F- Used to send the serial data received from board to the serial monitor.

306 Chapter 6. Arduino tutorial

keyestudio WiKi

6.1.2 2. Mac System:

2.1. Download Arduino IDE:

6.1. 1. Get started with Arduino C: 307

keyestudio WiKi

2.2. How to install the CP2102 driver

If you have installed the driver, just skip it.

1). Connect the ESP32 board to your computer, and open Arduino IDE.

2). Click “Tools→Board:ESP32 Dev Module” and “/dev/cu.usbserial-0001”.

308 Chapter 6. Arduino tutorial

keyestudio WiKi

3). Click to upload code.

Note: If code is uploaded unsuccessfully, you need to install driver of CP2102, please continue to follow the instructions
as below:

Download the driver of CP2102:

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

Select Mac OSX edition, as shown below;

Unzip the downloaded package.

6.1. 1. Get started with Arduino C: 309

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

keyestudio WiKi

Open folder and double-click “SiLabsUSBDriverDisk.dmg” file.

You will view the following files as follows:

310 Chapter 6. Arduino tutorial

keyestudio WiKi

Double-click “Install CP210x VCP Driver”, tick “Don’t warn me when opening application on this disk image”
and tap “Open”.

Click “Continue”.

6.1. 1. Get started with Arduino C: 311

keyestudio WiKi

Tap “Agree” and “Continue”.

Click “Continue” and input your password.

312 Chapter 6. Arduino tutorial

keyestudio WiKi

Select “Open Security Preferences”.

6.1. 1. Get started with Arduino C: 313

keyestudio WiKi

Click the lock to unlock “security & privacy preference”.

Tap Unlock and enter your Username and password

314 Chapter 6. Arduino tutorial

keyestudio WiKi

Then click “Allow”.

Back to installation page, and wait to install.

6.1. 1. Get started with Arduino C: 315

keyestudio WiKi

Successfully installed.

Then enter ArduinoIDE, click Tools and select Board ESP32 Dev Module and the serial port

316 Chapter 6. Arduino tutorial

keyestudio WiKi

is“/dev/cu.SLAB_USBtoUAPT.

Click to upload code and show “Done uploading”.

6.1. 1. Get started with Arduino C: 317

keyestudio WiKi

6.1.3 3. How to Add Libraries? :

3.1. What are Libraries ? :

Libraries are a collection of code that make it easy for you to connect sensors,displays, modules, etc.

For example, the built-in LiquidCrystal library helps talk to LCD displays. There are hundreds of additional libraries
available on the Internet for download.

The built-in libraries and some of these additional libraries are listed in the reference. https://www.arduino.cc/en/
Reference/Libraries

318 Chapter 6. Arduino tutorial

https://www.arduino.cc/en/Reference/Libraries
https://www.arduino.cc/en/Reference/Libraries

keyestudio WiKi

3.2. How to Install a Library ? :

Here we will introduce the most simple way to add libraries .

Step 1: After downloading well the Arduino IDE, you can right-click the icon of Arduino IDE. Find the option “Open
file location”.

Step 2: Click Open file location >libraries.

6.1. 1. Get started with Arduino C: 319

keyestudio WiKi

Step 3: Next, find out the “libraries” folder.

320 Chapter 6. Arduino tutorial

keyestudio WiKi

Copy in the libraries folder of Arduino. Then click “Replace the files in the
destination”.

6.1. 1. Get started with Arduino C: 321

keyestudio WiKi

322 Chapter 6. Arduino tutorial

keyestudio WiKi

6.1. 1. Get started with Arduino C: 323

keyestudio WiKi

6.2 2. Basic Projects

When we get the kit, we can see that there are 42 sensors/modules in the kit, which contain the corresponding ESP32
mainboard, ESP32 Expansion Board and wirings. Here, we will connect the 42 sensors individually to the ESP32
mainboard and the ESP32 Expansion Board using wirings. Then run the corresponding test code to test the function of
each sensor separately. Our next lesson is to study the principles of individual modules/sensors from simple to complex
as well as some extended applications of sensors to consolidate and deepen our understanding of the kits.

Note : When connecting the module/sensor wirings in the projects, the wiring method and position must be followed in
the document. What’s more, do not misconnect the power supply and signal pin, otherwise there may be no experimental
results or damage to the modules/sensors.

6.2.1 Project 1: Hello World

Overview
For ESP32 beginners, we will start with some simple things. In this project, you only need a ESP32 mainboard, a USB
cable and a computer to complete the “Hello World!” project, which is a test of communication between the ESP32
mainboard and the computer as well as a primary project.

Components

Wiring Diagram
In this project, we will use a USB cable to connect the ESP32 to a computer.

Test Code

//***
/*
* Filename : Hello World
* Description : Enter the letter R,and the serial port displays"Hello World".
* Auther :http//www.keyestudio.com
*/
char val;// defines variable "val"
void setup()
{

(continues on next page)

324 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

Serial.begin(9600);// sets baudrate to 9600
}
void loop()
{
if (Serial.available() > 0) {
val=Serial.read();// reads symbols assigns to "val"
if(val=='R')// checks input for the letter "R"
{ // if so,
Serial.println("Hello World!");// shows “Hello World !”.

}
}

}
//***

Before uploading the test code to the ESP32click “Tools” → “Board”select “ESP32 Wrover Module”.

Select the correct serial port.

6.2. 2. Basic Projects 325

keyestudio WiKi

Note: For macOS users, if the upload fails, set the baud rate to 115200 before clicking .

326 Chapter 6. Arduino tutorial

keyestudio WiKi

Click to upload the test code to the ESP32.

6.2. 2. Basic Projects 327

keyestudio WiKi

Note: If the uploading code fails, you can press and hold the Boot button on the ESP32 after clicking and release
the Boot button after the percentage of uploading progress appears., as shown below:

328 Chapter 6. Arduino tutorial

keyestudio WiKi

The code is uploaded successfully.

Test Result

After uploading successfullywe will use a USB cable to power on, click ,set the baud rate to 9600enter the letter
“R”click “Send”then the serial monitor prints “Hello World!”.

6.2. 2. Basic Projects 329

keyestudio WiKi

6.2.2 Project 2: Lighting up LED

Overview
In this kit, we have a Keyestudio Purple Module, which is very simple to control. If you want to light up the LED, you
just need to make a certain voltage across it.

In the project, we will control the high and low level of the signal end S through programming, so as to control the
LED on and off.

Working Principle

330 Chapter 6. Arduino tutorial

keyestudio WiKi

The two circuit diagrams are given.

The left one is wrong wiring-up diagram. Why? Theoretically, when the S terminal outputs high levels, the LED will
receive the voltage and light up.

Due to limitation of IO ports of ESP32 board, weak current can’t make LED brighten.

The right one is correct wiring-up diagram. GND and VCC are powered up. When the S terminal is a high level, the
triode Q1 will be connected and LED will light up(note: current passes through LED and R3 to reach GND by VCC
not IO ports). Conversely, when the S terminal is a low level, the triode Q1 will be disconnected and LED will go off.

Components

Wiring Diagram

6.2. 2. Basic Projects 331

keyestudio WiKi

Test Code

//***
/*
* Filename : Blink
* Description : led Flashing 1 s
* Auther : http://www.keyestudio.com
*/
int ledPin = 0; //Define LED pin connection to GPIO0
void setup() {

pinMode(ledPin, OUTPUT);//Set mode to output
}

void loop() {
digitalWrite(ledPin, HIGH); //Output high level, turn on led
delay(1000);//Delay 1000 ms
digitalWrite(ledPin, LOW); //Output low level,turn off led
delay(1000);//Delay 1000 ms

}
//***

Code Explanation
1). PinMode(pin,mode): Pin is the ESP32 GPIO pin number used to set the mode, here we set pin 0 as output mode.

2). DigitalWrite(pin, value): Pin is the GPIO pin, which is defined GP0 here. Valueis the digital level that we will
outputHIGH/LOW. If the pin is configured to OUTPUT using pinMode(), its voltage is set to the corresponding value:
3.3V is HIGH,low level is 0V (ground). When connect the LEDs to the pins, using the digitalWriteHIGH, the LEDs
will get dim.

3). Setup() executes once, while loop() executes all the time. Delay (ms) is delay function, ms is the number of
milliseconds to pause. Data type: unsigned longrange 0~ 4,294,967,295 (2^32 - 1).

4). Firstly, we connect the module signal to ledPIN, namely GP0, and set it to a high level to light the LEDs on the
module. Then delay 1000 ms, controlling the LEDs on the module light up for 1s and off for 1s to achieve the flashing
effect.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onwe will see that the LED in the circuit will flash alternately.

332 Chapter 6. Arduino tutorial

keyestudio WiKi

Note: If the uploading code fails, you can press and hold the Boot button on the ESP32 after clicking and release
the Boot button after the percentage of uploading progress appears.

as shown below:

6.2.3 Project 3: Traffic Lights Module

Overview
In this lesson, we will learn how to control multiple LED lights and simulate the operation of traffic lights.

Traffic lights are signal devices positioned at road intersections, pedestrian crossings, and other locations to control
flows of traffic.

In this kit, we will use the traffic light module to simulate the traffic light.

Working Principle

6.2. 2. Basic Projects 333

keyestudio WiKi

In previous lesson, we already know how to control an LED. In this part, we only need to control three separated LEDs.
Input high levels to the signal R(3.3V), then the red LED will be on.

Components

Wiring Diagram

334 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//***
/*
* Filename : Traffic_Light
* Description : Simulated traffic lights
* Auther : http://www.keyestudio.com
*/
int redPin = 15; //Red LED connected to GPIO15
int yellowPin = 2; //Yellow LED connected to GPIO2
int greenPin = 0; //Green LED connected to GPIO0

void setup() {
//LED interfaces are set to output mode
pinMode(greenPin, OUTPUT);
pinMode(yellowPin, OUTPUT);
pinMode(redPin, OUTPUT);

}

void loop() {
digitalWrite(greenPin, HIGH); //Lighting green LED
delay(5000); //Delay for 5 seconds
digitalWrite(greenPin, LOW); //Turn off green LEDS
for (int i = 1; i <= 3; i = i + 1) { //run three times
digitalWrite(yellowPin, HIGH); //Lighting yellow LED
delay(500); //Delay for 0.5 seconds
digitalWrite(yellowPin, LOW); //Turn off yellow LED
delay(500); //Delay for 0.5 seconds

}
digitalWrite(redPin, HIGH); //Lighting red LED
delay(5000); //Delay5s
digitalWrite(redPin, LOW); //Turn off red LED

}
//***

Code Explanation

6.2. 2. Basic Projects 335

keyestudio WiKi

Create pins, set pins mode and delayed functions.

We use the function for(). for (int i = 1; i <= 3; i = i + 1) represents the variable i adds 1 fir each time from 1 to 3.

The function for (int i = 255; i >= 0; i = i - 1) indicates that i reduces by 1 each time. When i<0, exit the for() loop and
execute 256 times

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onwe will see that the green LED will be on for 5s then off,
the yellow LED will flash for 3s then go off and the red one will be on for 5s then off, the three LED modules will
simulate the circulation of traffic lights automatically.

6.2.4 Project 4: Laser Sensor

Description
Lasers are widely used to cut, weld, surface treat, and more on specific materials. The energy of the laser is very high.
The toy laser pointer may cause glare to the human eye, and it may cause retinal damage for a long time. my country
also prohibits the use of laser to illuminate the aircraft.

Working Principle
The laser head sensor module is mainly composed of a laser head with a light-emitting die, a condenser lens, and a
copper adjustable sleeve. We can see the circuit schematic diagram of this module which is very similar to the LED
we have learned. They are all driven by triodes. A high-level digital signal is directly input at the signal end, then the
sensor will start to work; if inputting low levels, the sensor won’t work.

336 Chapter 6. Arduino tutorial

keyestudio WiKi

Components

Connection Diagram

6.2. 2. Basic Projects 337

keyestudio WiKi

Test Code

/*
* Filename : Laser sensor
* Description : Laser light flashing
* Auther : http://www.keyestudio.com
*/
int laserPin = 0; //Define the laser pin as GPIO 0
void setup() {
pinMode(laserPin, OUTPUT);//Define laser pin as output mode

}

void loop() {
digitalWrite(laserPin, HIGH); //Open the laser
delay(2000); //Delay 2 seconds
digitalWrite(laserPin, LOW); //Shut down the laser
delay(2000); //Delay 2 seconds

}

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onwe will see that the laser module will emit red laser signals
for 2 seconds and stop emitting signals for 2 seconds on a cycle.

338 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.5 Project 5: Breathing LED

Overview
A“breathing LED”is a phenomenon where an LED’s brightness smoothly changes from dark to bright and back to dark,
continuing to do so and giving the illusion of an LED“breathing. This phenomenon is similar to a lung breathing in
and out. So how to control LED’s brightness? We need to take advantage of PWM. You may refer to Project 6.

Components

Connection Diagram

6.2. 2. Basic Projects 339

keyestudio WiKi

Test Code

//**
/*
* Filename : Breathing Led
* Description : Make led light fade in and out, just like breathing.
* Auther : http//www.keyestudio.com
*/
#define PIN_LED 0 //define the led pin
#define CHN 0 //define the pwm channel
#define FRQ 1000 //define the pwm frequency
#define PWM_BIT 8 //define the pwm precision
void setup() {
ledcSetup(CHN, FRQ, PWM_BIT); //setup pwm channel
ledcAttachPin(PIN_LED, CHN); //attach the led pin to pwm channel

}

void loop() {
for (int i = 0; i < 255; i++) { //make light fade in

ledcWrite(CHN, i);
delay(10);

}
for (int i = 255; i > -1; i--) { //make light fade out
ledcWrite(CHN, i);
delay(10);

}
}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onwe will see that the LED on the module gradually gets
dimmer then brighter, cyclically, like human breathe.

340 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.6 Project 6: RGB Module

Overview
Among these modules is a RGB module. It adopts a F10-full color RGB foggy common cathode LED. We connect
the RGB module to the PWM port of MCU and the other pin to GND(for common anode RGB, the rest pin will be
connected to VCC). So what is PWM?

PWM is a means of controlling the analog output via digital means. Digital control is used to generate square waves
with different duty cycles (a signal that constantly switches between high and low levels) to control the analog output.

In general, the input voltages of ports are 0V and 5V. What if the 3V is required? Or a switch among 1V, 3V and 3.5V?
We cannot change resistors constantly. For this reason, we resort to PWM.

For Arduino digital port voltage outputs, there are only LOW and HIGH levels, which correspond to the voltage out-
puts of 0V and 5V respectively. You can define LOW as“0”and HIGH as“1’, and let the Arduino output five hun-
dred‘0’or“1”within 1 second. If output five hundred‘1’, that is 5V; if all of which is‘0’,that is 0V; if output 250 01
pattern, that is 2.5V.

This process can be likened to showing a movie. The movie we watch are not completely continuous. Actually, it
generates 25 pictures per second, which cannot be told by human eyes. Therefore, we mistake it as a continuous
process. PWM works in the same way. To output different voltages, we need to control the ratio of 0 and 1. The
more‘0’or‘1’ output per unit time, the more accurate the control.

Working Principle
For our experiment, we will control the RGB module to display different colors through three PWM values.

6.2. 2. Basic Projects 341

keyestudio WiKi

Components

Connection Diagram

Test Code

//**
/*
* Filename : RGB LED
* Description : Use RGBLED to show random color.

(continues on next page)

342 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

* Auther : http//www.keyestudio.com
*/
int ledPins[] = {0, 2, 15}; //define red, green, blue led pins
const byte chns[] = {0, 1, 2}; //define the pwm channels
int red, green, blue;
void setup() {
for (int i = 0; i < 3; i++) { //setup the pwm channels,1KHz,8bit
ledcSetup(chns[i], 1000, 8);
ledcAttachPin(ledPins[i], chns[i]);

}
}

void loop() {
red = random(0, 256);
green = random(0, 256);
blue = random(0, 256);
setColor(red, green, blue);
delay(200);

}

void setColor(byte r, byte g, byte b) {
ledcWrite(chns[0], 255 - r); //Common anode LED, low level to turn on the led.
ledcWrite(chns[1], 255 - g);
ledcWrite(chns[2], 255 - b);

}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power onwe will see that the RGB LED on the module starts to
display random colors.

6.2. 2. Basic Projects 343

keyestudio WiKi

6.2.7 Project 7: Button Sensor

Overview
In this kit, there is a Keyestudio single-channel button module, which mainly uses a tact switch and comes with a yellow
button cap.

In previous lessons, we learned how to make the pins of our single-chip microcomputer output a high level or low level.
In this experiment, we will read the high level (3.3V) and low level (0V).

We can determine whether the button on the sensor is pressed by reading the high and low level of the S terminal on
the sensor.

Working Principle
The button module has four pins. The pin 1 is connected to the pin 3 and the pin 2 is linked with the pin 4. When
the button is not pressed, they are disconnected. Yet, when the button is pressed, they are connected. If the button is
released, the signal end is high level.

344 Chapter 6. Arduino tutorial

keyestudio WiKi

Components

Connection Diagram

6.2. 2. Basic Projects 345

keyestudio WiKi

Test Code

//***
/*
* Filename : button
* Description : Read key value
* Auther : http://www.keyestudio.com
*/
int val = 0; //Useto store key values
int button = 15; //The pin of the button is connected to GP15
void setup() {
Serial.begin(9600); //Start the serial port monitor and set baud rate to 9600
pinMode(button, INPUT); //Set key pin to input mode

}

void loop() {
val = digitalRead(button); //Read the value of the key and assign it to the variable␣

→˓val
Serial.print(val); //Print it on the serial port
if (val == 0) { //Press the key to read the low level and print the press related␣

→˓information
Serial.print(" ");
Serial.println("Press the botton");
delay(100);

}

else { //Print information about key release
Serial.print(" ");
Serial.println("Loosen the botton");
delay(100);

}
}
//***

Code Explanation
1). pinMode(button, INPUT); set the pin of the button module to GP15 and INPUT.

Configure INPUT through pinMode(). INPUT must use the pull-up or pull-down resistor(ours module has the pull-up
resistor RI).

2). Serial.begin(9600): Initialize serial communication and set the baud rate to 9600.

3). digitalRead(button): read the digital level of the button(HIGH or LOW). If this pin is not connected to pins, the
digitalRead() will return HIGH or LOW.

4). if. . . else. . . if the logic behind () is true, execute the code of (); otherwise execute the code of else.

5). If the button is pressed, the signal end is low level, GP15 is low level and Val is 0. Then the monitor will show
the corresponding value and characters; otherwise, the sensor is released, val is 1 and monitor will show 1 and other
characters

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onopen the serial monitor and set the baud rate to 9600. The
serial monitor will display the corresponding data and characters. When the button is pressed, val is 0, the monitor

346 Chapter 6. Arduino tutorial

keyestudio WiKi

will show“Press the button”when the button is released, val is 1the monitor will show“Loosen the button”; as shown
below:

6.2. 2. Basic Projects 347

keyestudio WiKi

6.2.8 Project 8: Capacitive Sensor

Description
In this kit, there is a capacitive touch module which mainly uses a TTP223-BA6 chip. It is a touch detection chip,
which provides a touch button, and its function is to replace the traditional button with a variable area button. When
we power on, the sensor needs about 0.5 seconds to stabilize.

Do not touch the keys during this time period. At this time, all functions are disabled, and self-calibration is always
performed. The calibration period is about 4 seconds. We display the test results in the shell.

Working Principle
When our fingers touch the module, the signal S outputs high levels, the red LED on the module flashes. We can
determine if the button is pressed or not by reading high and low levels on the sensor.

348 Chapter 6. Arduino tutorial

keyestudio WiKi

Required Components

Connection Diagram

6.2. 2. Basic Projects 349

keyestudio WiKi

Test Code

//***
/*
* Filename : Touch sensor
* Description : Reading touch value
* Auther : http://www.keyestudio.com
*/
int val = 0;
int touch = 15; //The key of PIN
void setup() {

Serial.begin(9600);//Baud rate is 9600
pinMode(touch, INPUT);//Setting input mode

}

void loop() {
val = digitalRead(touch);//Read the value of the key
Serial.print(val);//Print out key values
if (val == 1) {//Press for high level
Serial.print(" ");
Serial.println("Press the button");
delay(100);

}
else {//Release to low level

Serial.print(" ");
Serial.println("Loosen the button");
delay(100);

}
}
//***

Code Explanation
When we touch the sensor, the Shell monitor will show“Pressed the button!”, if not,“ Loosen the button!”will be shown
on the monitor.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onopen the serial monitor and set the baud rate to 9600.

The serial monitor will display the corresponding data and characters. when the button is pressed, the red LED lights
up and val is 1. Then the shell shows “Pressed the button!”; if the button is released, the red LED is off and val is
0,“Loosen the button!”will be displayed.

350 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.9 Project 9: Obstacle Avoidance Sensor

Overview
In this kit, there is a Keyestudio obstacle avoidance sensor, which mainly uses an infrared emitting and a receiving tube.

In the experiment, we will determine whether there is an obstacle by reading the high and low level of the S terminal
on the sensor.

Working Principle
NE555 circuit provides IR signals with frequency to the emitter TX, then the IR signals will fade with the increase of
transmission distance. If encountering the obstacle, it will be reflected back.

6.2. 2. Basic Projects 351

keyestudio WiKi

When the receiver RX meets the weak signals reflected back, the receiving pin will output high levels, which indicates
the obstacle is far away. On the contrary, it the reflected signals are stronger, low levels will be output, which represents
the obstacle is close. There are two potentiometers on the module, and by adjusting the two potentiometers, we can
adjust its effective distance.

Components

Connection Diagram

352 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//***
/*
* Filename : obstacle avoidance sensor
* Description : Reading the obstacle avoidance value
* Auther : http://www.keyestudio.com
*/
int val = 0;
void setup() {
Serial.begin(9600);//Set baud rate to 9600
pinMode(15, INPUT);//Set pin GP15 to input mode

}

void loop() {
val = digitalRead(15);//Read digital level
Serial.print(val);//Print the level signal read
if (val == 0) {//Obstruction detected
Serial.print(" ");
Serial.println("There are obstacles");
delay(100);

}
else {//No obstructions detected

Serial.print(" ");
Serial.println("All going well");
delay(100);

}
}
//***

Code Explanation
Note:
Upload the test code and wire up according to the connection diagram. After powering on, we start to adjust the two
potentiometers to sense distance.

Test Result

6.2. 2. Basic Projects 353

keyestudio WiKi

Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onopen the serial monitor and set the baud rate to 9600.

The serial monitor will display the corresponding data and characters. When the sensor detects the obstacle, the val
is 0, the monitor will show“There are obstacles”; if the obstacle is not detected, the val is 1,“All going well” will be
shown.

6.2.10 Project 10: Line Tracking Sensor

354 Chapter 6. Arduino tutorial

keyestudio WiKi

Description
In this kit, there is a DIY electronic building block single-channel line tracking sensor which mainly uses a TCRT5000
reflective black and white line recognition sensor element.

In the experiment, we judge the color (black and white) of the object detected by the sensor by reading the high and
low levels of the S terminal on the module; and display the test results on the shell.

Working Principle
When a black or no object is detected, the signal terminal will output high levels; when white object is detected, the
signal terminal is low level; its detection height is 0-3cm. We can adjust the sensitivity by rotating the potentiometer
on the sensor. When the potentiometer is rotated, the sensitivity is best when the red LED on the sensor is at the critical
point between off and on.

Required Components

6.2. 2. Basic Projects 355

keyestudio WiKi

Connection Diagram

Test Code

//***
/*
* Filename : line tracking
* Description : Reading the tracking sensor value
* Auther : http://www.keyestudio.com
*/
int val = 0;
void setup() {
Serial.begin(9600);//Set baud rate to 9600
pinMode(15, INPUT);//Sets sensor pin to input mode

}

void loop() {
val = digitalRead(15);//Read the digital level output by the patrol sensor
Serial.print(val);//Serial port print value
if (val == 0) {//White val is 0 detected
Serial.print(" ");

(continues on next page)

356 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

Serial.println("White");
delay(100);

}
else {//Black val is 1 detected

Serial.print(" ");
Serial.println("Black");
delay(100);

}
}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onopen the serial monitor and set the baud rate to 9600.

The serial monitor will display the corresponding data and characters. when the sensor doesn’t detect an object or
detects a black object, the val is 1, and the monitor will display “1 Black” ; when a white object (can reflect light) is
detected, the val is 0, and the monitor will display “0 White”.

6.2. 2. Basic Projects 357

keyestudio WiKi

6.2.11 Project 11: Photo Interrupter

Description
This kit contains a photo interrupter which mainly uses 1 ITR-9608 photoelectric switch. It is a photoelectric switch
optical switch sensor.

Working Principle
When the paper is put in the slot, C is connected with VCC and the signal end S of the sensor are high levels; then the
red LED will be off. Otherwise, the red LED will be on.

Required Components

358 Chapter 6. Arduino tutorial

keyestudio WiKi

Connection Diagram

Test Code

//***
/*
* Filename : Photo_Interrupt
* Description : Light snap sensor counting
* Auther : http://www.keyestudio.com
*/
int PushCounter = 0; //The count variable is assigned an initial value of 0
int State = 0; //Store the current state of the sensor output
int lastState = 0; //Stores the state of the last sensor output
void setup() {
Serial.begin(9600);//Set the baud rate to 9600
pinMode(15, INPUT);//Set the light snap sensor pin to input mode

}

void loop() {
State = digitalRead(15);//Read current state
if (State != lastState) {//If the state is different from the last read
if (State == 1) {//block the light
PushCounter = PushCounter + 1;//Count + 1

(continues on next page)

6.2. 2. Basic Projects 359

keyestudio WiKi

(continued from previous page)

Serial.println(PushCounter);//Print count
}

}
lastState = State;//Update state

}
//***

Code Explanation
Logic setting:

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onopen the serial monitor and set the baud rate to 9600.

The serial monitor will display the PushCounter data. Every time when the object passes through the slot of the sensor,
the PushCounter data will increase by 1 continuously, as shown below;

360 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.12 Project 12: Tilt Module

Overview
In this kit, there is a Keyestudio tilt sensor. The tilt switch can output signals of different levels according to whether
the module is tilted. There is a ball inside. When the switch is higher than the horizontal level, the switch is turned on,
and when it is lower than the horizontal level, the switch is turned off. This tilt module can be used for tilt detection,
alarm or other detection.

Working Principle
The working principle is pretty simple. When pin 1 and 2 of the ball switch P1 are connected, the signal S is low level
and the red LED will light up; when they are disconnected, the pin will be pulled up by the 4.7K R1 and make S a high
level, then LED will be off.

6.2. 2. Basic Projects 361

keyestudio WiKi

Components

Connection Diagram

362 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//***
/*
* Filename : Tilt switch
* Description : Reading the tilt sensor value
* Auther :http://www.keyestudio.com
*/
int val; //Store the level value output by the tilt sensor

void setup() {
Serial.begin(9600);
pinMode(15, INPUT); //Connect the pin of the tilt sensor to GP15 and set GP15 to the␣

→˓input mode
}

void loop() {
val = digitalRead(15); //Read module level signal
Serial.println(val); //Newline print
delay(100); //Delay for 100 ms

}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onopen the serial monitor and set the baud rate to 9600. Make
the tilt module incline to one side, the red LED on the module will be off and the monitor will display“1”. In contrast,
if you make it incline the other side, the red LED will light up and the monitor will display “0”.

6.2. 2. Basic Projects 363

keyestudio WiKi

6.2.13 Project 13: Collision Sensor

Description
The collision sensor uses a tact switch. This sensor is often used as a limit switch in 3D printers. In the experiment, we
judge whether the sensor shrapnel is pressed down by reading the high and low levels of the S terminal on the module;
and, we display the test results in the shell.

Working Principle
It mainly uses a tact switch. When the shrapnel of the tact switch is pressed, 2 and 3 are connected, the signal terminal S
is low level, and the red LED on the module lights up; when the touch switch is not pressed, 2 and 3 are not connected,
and 3 is pulled up to a high level by the 4.7K resistor R1, that is, the sensor signal terminal S is a high level, and the
built-in red LED will be off at this time.

364 Chapter 6. Arduino tutorial

keyestudio WiKi

Components Required

Connection Diagram

Test Code

//***
/*
* Filename : collision sensor
* Description : Reading the value of the collision sensor
* Auther : http://www.keyestudio.com
*/
int val = 0;
void setup() {
Serial.begin(9600);//Set baud rate to 9600
pinMode(15, INPUT);//Set collision sensor pin 15 to input mode

}

void loop() {
val = digitalRead(15);//Read the value of the collision sensor
Serial.print(val);//Newline print

(continues on next page)

6.2. 2. Basic Projects 365

keyestudio WiKi

(continued from previous page)

if (val == 0) {//Collision val is 0
Serial.print(" ");
Serial.println("The end of his!");
delay(100);

}
else {// No collision val is 1

Serial.print(" ");
Serial.println("All going well");
delay(100);

}
}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onopen the serial monitor and set the baud rate to 9600. The
serial monitor will display the corresponding data and characters.

In the experiment, when the shrapnel on the sensor is pressed down, val is 0, the red LED of the module is on, and “0
The end of his!” is printed; when the shrapnel is released, the val is 1, the red LED of the module is off, and “1 All
going well” is printed. !” character, as shown below.

366 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.14 Project 14: Hall Sensor

Description
In this kit, there is a Hall sensor which mainly adopts a A3144 linear Hall element. The element P1 is composed of
a voltage regulator, a Hall voltage generator, a differential amplifier, a Schmitt trigger, a temperature compensation
circuit and an open-collector output stage. In the experiment, we use the Hall sensor to detect the magnetic field and
display the test results on the shell.

Working Principle
When the sensor detects no magnetic field or a north pole magnetic field, the signal terminal will be high level; when
it senses a south pole magnetic field, the signal terminal will be low levels. The stronger the magnetic field strength is,
induction distance is longer.

Required Components

6.2. 2. Basic Projects 367

keyestudio WiKi

Connection Diagram

Test Code

//***
/*
* Filename : Hall magnetic
* Description : Reading the value of hall magnetic sensor
* Auther : http://www.keyestudio.com
*/
int val = 0;
int hallPin = 15; //Hall sensor pin is connected to GPIO15
void setup() {
Serial.begin(9600);//Set baud rate to 9600
pinMode(hallPin, INPUT);//Set pin to input mode

}

void loop() {
val = digitalRead(hallPin);//Read the level value of hall sensor
Serial.print(val);//Print val
if (val == 0) {//There is a South Pole magnetic field
Serial.println(" The magnetic field at the South Pole!");

}
(continues on next page)

368 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

else {//If not
Serial.println(" Just be all normal!");

}
}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on, open the serial monitor and set the baud rate to 9600. when
the sensor detects no magnetic fields or the north pole magnetic field, the monitor l will show “1 Just be all normal!”
and the LED on the sensor will be off; When it detects the south pole magnetic field,“0 The magnetic field at the South
Pole!”and the LED on the sensor will be on.

6.2.15 Project 15: Reed Switch Module

Overview
In this kit, there is a Keyestudio reed switch module, which mainly uses a MKA10110 green reed component.

The reed switch is the abbreviation of the dry reed switch. It is a passive electronic switch element with contacts.

6.2. 2. Basic Projects 369

keyestudio WiKi

It has the advantages of simple structure, small size and easy control.

Its shell is a sealed glass tube with two iron elastic reed electric plates.

In the experiment, we will determine whether there is a magnetic field near the module by reading the high and low
level of the S terminal on the module; and, we display the test result in the shell.

Working Principle
In normal conditions, the glass tube in the two reeds made of special materials are separated. When a magnetic sub-
stance close to the glass tube, in the role of the magnetic field lines, the pipe within the two reeds are magnetized to
attract each other in contact, the reed will suck together, so that the junction point of the connected circuit communi-
cation.

After the disappearance of the outer magnetic reed because of their flexibility and separate, the line is disconnected.
The sensor uses this characteristic to build a circuit to convert magnetic field signal into high and low level signal.

Components

Connection Diagram

370 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//***
/*
* Filename : Reed Switch
* Description : Read the value of the reed sensor
* Auther : http://www.keyestudio.com
*/
int val = 0;
int reedPin = 15; //Define dry reed module signal pin connected to GPIO15
void setup() {
Serial.begin(9600);//Set baud rate to 9600
pinMode(reedPin, INPUT);//Set mode to input

}

void loop() {
val = digitalRead(reedPin);//Read digital level
Serial.print(val);//Serial port shows up

if (val == 0) {//There's a magnetic field nearby
Serial.print(" ");
Serial.println("A magnetic field");
delay(100);

}
else {//There is no magnetic field

Serial.print(" ");
Serial.println("There is no magnetic field");
delay(100);

}
}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onopen the serial monitor and set the baud rate to 9600. The
serial monitor will display the corresponding data and characters.

6.2. 2. Basic Projects 371

keyestudio WiKi

When the sensor detects a magnetic field, val is 0 and the red LED of the module lights up, “0 A magnetic field” will be
displayed; when no magnetic field is detected, val is 1, and the LED on the module goes out, “1 There is no magnetic
field” will be shown, as shown below.

6.2.16 Project 16: PIR Motion Sensor

Overview

372 Chapter 6. Arduino tutorial

keyestudio WiKi

In this kit, there is a Keyestudio PIR motion sensor, which mainly uses an RE200B-P sensor elements. It is a human
body pyroelectric motion sensor based on pyroelectric effect, which can detect infrared rays emitted by humans or
animals, and the Fresnel lens can make the sensor’s detection range farther and wider.

In the experiment, we determine if there is someone moving nearby by reading the high and low levels of the S terminal
on the module. The detected results will be displayed on the Shell.

Working Principle
The upper left part is voltage conversion(VCC to 3.3V). The working voltage of sensors we use is 3.3V, therefore we
can’t use 5V directly. The voltage conversion circuit is needed.

When no person is detected or no infrared signal is received, and pin 1 of the sensor outputs low level. At this time,
the LED on the module will light up and the MOS tube Q1 will be connected and the signal terminal S will detect Low
levels.

When one is detected or an infrared signal is received, and pin 1 of the sensor outputs a high level. Then LED on the
module will go off, the MOS tube Q1 is disconnected and the signal terminal S will detect high levels.

Required Components

Connection Diagram

6.2. 2. Basic Projects 373

keyestudio WiKi

Test Code

//***
/*
* Filename : PIR motion
* Description : Reading the value of the human body infrared sensor
* Auther : http://www.keyestudio.com
*/
int val = 0;
int pirPin = 15; //The pin of PIR motion sensor is defined as GPIO15
void setup() {
Serial.begin(9600); //Set baud rate to 9600
pinMode(pirPin, INPUT); //Set the sensor to input mode

}

void loop() {
val = digitalRead(pirPin); //Read the sensor value
Serial.print(val);//Print val value
if (val == 1) {//There is movement nearby, output high level
Serial.print(" ");
Serial.println("Some body is in this area!");
delay(100);

}
else {//If no movement nearby, output low level

Serial.print(" ");
Serial.println("No one!");
delay(100);

}
}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onopen the serial monitor and set the baud rate to 9600. The
serial monitor will display the corresponding data and characters.

When the sensor detects someone nearby, value is 1, the LED will go off and the monitor will show“1 Somebody is in

374 Chapter 6. Arduino tutorial

keyestudio WiKi

this area!”. In contrast, the value is 0, the LED will go up and“0 No one!”will be shown.

6.2.17 Project 17: Active Buzzer

Overview
In this kit, it contains an active buzzer module and a power amplifier module (the principle is equivalent to a passive
buzzer). In this experiment, we control the active buzzer to emit sounds. Since it has its own oscillating circuit, the
buzzer will automatically sound if given large voltage.

6.2. 2. Basic Projects 375

keyestudio WiKi

Working Principle
From the schematic diagram, the pin of buzzer is connected to a resistor R2 and another port is linked with a NPN
triode Q1. So, if this triode Q1 is powered, the buzzer will sound.

If the base electrode of the triode connected to the R1 resistor is a high level, the triode Q1 will be connected.If the
base electrode is pulled down by the resistor R3, the triode is disconnected.

When we output a high level from the IO port to the triode, the buzzer will emit sounds; if outputting low levels, the
buzzer won’t emit sounds.

Components

Connection Diagram

376 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//***
/*
* Filename : Active buzzer
* Description : An active buzzer produces sound
* Auther : http://www.keyestudio.com
*/
int buzzer = 15; //Define buzzer receiver pin GPIO15
void setup() {
pinMode(buzzer, OUTPUT);//Set the output mode

}

void loop() {
digitalWrite(buzzer, HIGH); //sound production
delay(1000);
digitalWrite(buzzer, LOW); //Stop the sound
delay(1000);

}
//***

Code Explanation
In the experiment, we set the pin to GPIO15. When setting to high, the active buzzer will beep; when setting to low,
the active buzzer will stop emitting sounds.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. The active buzzer will emit sound for 1 second, and stop
for 1 second.

6.2. 2. Basic Projects 377

keyestudio WiKi

6.2.18 Project 18: 8002b Audio Power Amplifier

Overview
In this kit, there is a Keyestudio 8002b audio power amplifier. The main components of this module are an adjustable
potentiometer, a speaker, and an audio amplifier chip.

The main function of this module is: it can amplify the output audio signal, with a magnification of 8.5 times, and
play sound or music through the built-in low-power speaker, as an external amplifying device for some music playing
equipment.

In the experiment, we used the 8002b power amplifier speaker module to emit sounds of various frequencies.

Working Principle
In fact, it is similar to a passive buzzer. The active buzzer has its own oscillation source. Yet, the passive buzzer does
not have internal oscillation. When controlling the circuit, we need to input square waves of different frequencies to
the positive pole of the component and ground the negative pole to control the buzzer to chime sounds of different
frequencies.

378 Chapter 6. Arduino tutorial

keyestudio WiKi

Components

Connection Diagram

6.2. 2. Basic Projects 379

keyestudio WiKi

Test Code

//**
/*
* Filename : Passive Buzzer
* Description : Passive Buzzer sounds the alarm.
* Auther : http//www.keyestudio.com
*/
#define LEDC_CHANNEL_0 0

// LEDC timer uses 13 bit accuracy

#define LEDC_TIMER_13_BIT 13

// Define tool I/O ports

#define BUZZER_PIN 15

//Create a musical melody list, Super Mario

int melody[] = {330, 330, 330, 262, 330, 392, 196, 262, 196, 165, 220, 247, 233, 220,␣
→˓196, 330, 392, 440, 349, 392, 330, 262, 294, 247, 262, 196, 165, 220, 247, 233, 220,␣
→˓196, 330, 392,440, 349, 392, 330, 262, 294, 247, 392, 370, 330, 311, 330, 208, 220,␣
→˓262, 220, 262,

294, 392, 370, 330, 311, 330, 523, 523, 523, 392, 370, 330, 311, 330, 208, 220, 262,220,␣
→˓262, 294, 311, 294, 262, 262, 262, 262, 262, 294, 330, 262, 220, 196, 262, 262,262,␣
→˓262, 294, 330, 262, 262, 262, 262, 294, 330, 262, 220, 196};

//Create a list of tone durations

int noteDurations[] = {8,4,4,8,4,2,2,3,3,3,4,4,8,4,8,8,8,4,8,4,3,8,8,3,3,3,3,4,4,8,4,8,8,
→˓8,4,8,4,3,8,8,2,8,8,8,4,4,8,8,4,8,8,3,8,8,8,4,4,4,8,2,8,8,8,4,4,8,8,4,8,8,3,3,3,1,8,4,
→˓4,8,4,8,4,8,2,8,4,4,8,4,1,8,4,4,8,4,8,4,8,2};
void setup() {

(continues on next page)

380 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

pinMode(BUZZER_PIN, OUTPUT); // Set the buzzer to output mode
}

void loop() {

int noteDuration; //Create a variable of noteDuration

for (int i = 0; i < sizeof(noteDurations); ++i)

{
noteDuration = 800/noteDurations[i];

ledcSetup(LEDC_CHANNEL_0, melody[i]*2, LEDC_TIMER_13_BIT);

ledcAttachPin(BUZZER_PIN, LEDC_CHANNEL_0);

ledcWrite(LEDC_CHANNEL_0, 50);

delay(noteDuration * 1.30); //delay
}

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onthen the power amplifier module will emit the sound on a
loop.

6.2.19 Project 19: 130 Motor

Description

6.2. 2. Basic Projects 381

keyestudio WiKi

The 130 motor driver module is compatible with servo motors, which has high efficiency and good quality fans.

It adopts a HR1124S motor control chip. HR1124S is a single-channel H-bridge driver chip for DC motor solutions.
In addition, this chip has low standby current and low quiescent current.

The module is compatible with various single-chip control boards. In the experiment, we can control the rotation
direction of the motor by outputting the voltage directions of the two signal terminals IN+ and IN- to make the motor
rotate.

Working Principle
The chip is used to help drive the motor. We can’t drive it with a triode or an IO port due to its a large current of need.
It is very simple to make the motor rotate. Just apply voltage to both ends of the motor. The direction of the motor is
different in different voltage directions. Within the rated voltage, the higher the voltage, the faster the motor rotates; on
the contrary, the lower the voltage, the slower the motor rotates, or even unable to rotate.

So we can use the PWM port to control the speed of the motor. We haven’t learned PWM here, so we use the high and
low levels to control the motor first.

Required Components

Note: the motor is separated with its fan, you need to assemble it first.

Connection Diagram

130 Motor ESP32 Expansion Board
G G
V 5V
IN+ IO15
IN- IO4

382 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//***
/*
* Filename : 130DC Fan motor
* Description : Motor positive and negative rotation
* Auther : http://www.keyestudio.com
*/
//Define two pins interfaces of the motor, respectively 15 and 4
int INA = 15; //INA corresponds to IN+
int INB = 4; //INB corresponds to IN-
void setup() {
//Set the motor pins as output
pinMode(INA, OUTPUT);
pinMode(INB, OUTPUT);

}

void loop() {
//Turn counterclockwise
digitalWrite(INA, HIGH);
digitalWrite(INB, LOW);
delay(2000);
//stop
digitalWrite(INA, LOW);
digitalWrite(INB, LOW);
delay(1000);
//clockwise rotation
digitalWrite(INA, LOW);
digitalWrite(INB, HIGH);
delay(2000);
//stop
digitalWrite(INA, LOW);
digitalWrite(INB, LOW);
delay(1000);

}
//***

Code Explanation
Set pins to GPIO4GPIO15, when the pin GPIO4 outputs low levels and the pin GPIO15 outputs high levels, the motor
will rotate counterclockwise; when both pins are set to low, the motor stops rotating.

Test Result
Connect the wires according to the experimental wiring diagram and power on. Switch the DIP switch ON the ESP32
expansion board to the ON end, after powering on, compile and upload the code to the ESP32. After uploading

6.2. 2. Basic Projects 383

keyestudio WiKi

successfullythe fan will rotate counterclockwise for 2 seconds, stop for 1 second and clockwise for 2 seconds and
stop for 1 second; cycle alternately.

6.2.20 Project 20: Potentiometer

Overview
The following we will introduce is the Keyestudio rotary potentiometer which is an analog sensor.

The digital IO ports can read the voltage value between 0 and 3.3V and the module only outputs high levels. However,
the analog sensor can read the voltage value through 16 ADC analog ports on the ESP32 board. In the experiment, we
will display the test results on the Shell.

Working Principle

It uses a 10K adjustable resistor. We can change the resistance by rotating the potentiometer. The signal S can detect
the voltage changes(0-3.3V) which are analog quantity.

ADC: The more bits an ADC has, the denser the partitioning of the simulation, the higher the accuracy of the final
conversion.

384 Chapter 6. Arduino tutorial

keyestudio WiKi

Subsection 1: The analog value within 0V—3.3/4095 V corresponds to the number 0; Subsection 2: The analog value
within 3.3/4095V—2*3.3/4095V corresponds to the number 1;

The conversion formula is as follows:

DAC: The higher the precision of DAC, the higher the precision of the output voltage value.

The conversion formula is as follows:

ADC on ESP32
The ESP32 has 16 pins that can be used to measure analog signals. GPIO pin serial numbers and analog pin definitions
are shown below:

6.2. 2. Basic Projects 385

keyestudio WiKi

ADC number in ESP32 ESP32 GPIO number

ADC0 GPIO 36

ADC3 GPIO 39

ADC4 GPIO 32

ADC5 GPIO33

ADC6 GPIO34

ADC7 GPIO 35

ADC10 GPIO 4

ADC11 GPIO0

ADC12 GPIO2

ADC13 GPIO15

ADC14 GPIO13

ADC15 GPIO 12

ADC16 GPIO 14

ADC17 GPIO27

ADC18 GPIO25

ADC19 GPIO26

DAC on ESP32
The ESP32 has two 8-bit digital-to-analog converters connected to GPIO25 and GPIO26 pins, which are immutable,
as shown below :

Simulate pin number GPIO number
DAC1 GPIO25
DAC2 GPIO26

Components

386 Chapter 6. Arduino tutorial

keyestudio WiKi

Connection Diagram

Test Code

//**
/*
* Filename : Rotary_potentiometer
* Description : Read the basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 34 //the pin of the Potentiometer

void setup() {
Serial.begin(9600);

}

//In loop()the analogRead() function is used to obtain the ADC value,
//and then the map() function is used to convert the value into an 8-bit precision DAC␣
→˓value.
//The input and output voltage are calculated according to the previous formula,
//and the information is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);

(continues on next page)

6.2. 2. Basic Projects 387

keyestudio WiKi

(continued from previous page)

double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Code Explanation
1). analogVal means analog value. The rotary potentiometer outputs analog values(0~4095), therefore, we set pins to
analog ports. For example, we connect to GPIO34.

2). analogRead(pin): read the value of the specified analog pin. The ESP32 contains a multi-channel, 12-bit converter.
This means that it will map the input voltage between 0 and the working voltage (5V or 3.3V) to an integer value
between 0 and 4095. For example, this will produce a resolution among readings: 3.3V/4096 stands for 0.0008V per
unit.

3). The map() function converts this 12-bit DAC value to an 8-bit DAC value.

4). Pin: the name of analog input pin.

5). The serial monitor displays the values of adcVal, dacVal, voltage, the baud rate must be set before display (we
default to 9600,which can be changed).

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on, open the serial monitor and set the baud rate to 9600.
The serial monitor will display the potentiometer’s ADC value, DAC value and voltage value. Rotate the potentiometer
handle, the analog values will change.

388 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.21 Project 21: Steam Sensor

Description
This is a DIY electronic building block water drop sensor. It is an analog (digital) input module, also called rain,
rain sensor. It can be used to monitor various weather conditions, detect whether it is raining and the amount of rain,
convert it into digital signal (DO) and analog signal (AO) output, and is widely used in Arduino robot kits, raindrops,
rain sensors, and can be used for various It can monitor various weather conditions, and convert it into digital signal
and AO output, and can also be used for automobile automatic wiper system, intelligent lighting system and intelligent
sunroof system.

In the experiment, we input the sensor signal terminal (S terminal) to the analog port of the ESP32 development board,
sense the change of the analog value, and display the corresponding analog value on the shell.

Working Principle
Its principle is to detect the amount of water through the exposed printed parallel lines on the circuit board. The more
water there is, the more wires will be connected, and the conductive contact area increases. The voltage output by pin
2 will gradually increase. The larger the analog value detected by the signal terminal S is.

It can also detect steam in the air. Two position holes are used to install on the other devices.

6.2. 2. Basic Projects 389

keyestudio WiKi

Required Components

Connection Diagram

Test Code

390 Chapter 6. Arduino tutorial

keyestudio WiKi

//**
/*
* Filename : Steam sensor
* Description : Read the basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 34 //the pin of the Steam sensor

void setup() {
Serial.begin(9600);

}

//In loop()the analogRead() function is used to obtain the ADC value,
//and then the map() function is used to convert the value into an 8-bit precision DAC␣
→˓value.
//The input and output voltage are calculated according to the previous formula,
//and the information is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32.

After uploading successfully, we will use a USB cable to power on, open the serial monitor and set the baud rate to
9600. The serial monitor will display the steam sensor’s ADC value, DAC value and voltage value. When a few drops
of water are placed in the sensor sensing area, the values will change. The more water volume, the greater the output
voltage value , ADC value and the DAC value .

6.2. 2. Basic Projects 391

keyestudio WiKi

6.2.22 Project 22: Sound Sensor

Overview
In this kit, there is a Keyestudio DIY electronic block and a sound sensor.

392 Chapter 6. Arduino tutorial

keyestudio WiKi

In the experiment, we test the analog value corresponding to the sound level in the current environment with it. The
louder the sound, the larger the ADC, DAC and the voltage value, and the serial monitor window will display the test
results.

Working Principle
It uses a high-sensitive microphone component and an LM386 chip. We build the circuit with the LM386 chip and
amplify the sound through the high-sensitive microphone. In addition, we can adjust the sound volume by the poten-
tiometer. Rotate it clockwise, the sound will get louder.

Components

Connection Diagram

6.2. 2. Basic Projects 393

keyestudio WiKi

Test Code

//**
/*
* Filename : MicroPhone
* Description : Read the basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 34 //the pin of the Sound Sensor

void setup() {
Serial.begin(9600);

}

//In loop()the analogRead() function is used to obtain the ADC value, and then the map()␣
→˓function is used to convert the value into an 8-bit precision DAC value.
//The input and output voltage are calculated according to the previous formula, and the␣
→˓information is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on, open the serial monitor and set the baud rate to 9600.
The serial monitor will display the sound sensor’s ADC value, DAC value and voltage value. Rotate the potentiometer
clockwise and speak at the MIC. Then you can see the analog value get larger, as shown below:

394 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.23 Project 23: Photoresistor

Description
In this kit, there is a photoresistor consists of photosensitive resistance elements. Its resistance changes with the light
intensity. Also, it converts the resistance change into a voltage change through the characteristic of the photosensitive

6.2. 2. Basic Projects 395

keyestudio WiKi

resistive element. When wiring it up, we interface its signal terminal (S terminal) with the analog port of ESP32 , so
as to sense the change of the analog value, and display the corresponding analog value in the shell.

Working Principle
If there is no light, the resistance is 0.2M and the detected voltage at the terminal is close to 0. When the light intensity
increases, the resistance of photoresistor and detected voltage will diminish, and the detected voltage is increasing.

Components

Connection Diagram

396 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : Photoresistance
* Description : Read the basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 34 //the pin of the Photoresistance

void setup() {
Serial.begin(9600);

}

//In loop()the analogRead() function is used to obtain the ADC value, and then the map()␣
→˓function is used to convert the value into an 8-bit precision DAC value.
//The input and output voltage are calculated according to the previous formula, and the␣
→˓information is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32.

After uploading successfullywe will use a USB cable to power on, open the serial monitor and set the baud rate to 9600.
The serial monitor will display the photoresistor’s ADC value, DAC value and voltage value. When the light intensity
gets stronger, the analog values will get larger, as shown below:

6.2. 2. Basic Projects 397

keyestudio WiKi

398 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.24 Project 24: NTC-MF52AT Thermistor

Overview
In the experiment, there is a NTC-MF52AT analog thermistor. We connect its signal terminal to the analog port of the
ESP32 mainboard and read the corresponding ADC value, voltage value and thermistor value.

We can use analog values to calculate the temperature of the current environment through specific formulas. Since the
temperature calculation formula is more complicated, we only read the corresponding analog value.

Working Principle

6.2. 2. Basic Projects 399

keyestudio WiKi

This module mainly uses NTC-MF52AT thermistor element, which can sense the changes of the surrounding environ-
ment temperature. Resistance changes with the temperature, causing the voltage of the signal terminal S to change.

This sensor uses the characteristics of NTC-MF52AT thermistor element to convert resistance changes into voltage
changes.

Components

Connection Diagram

400 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : Temperature sensor
* Description : Making a thermometer by thermistor.
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 34
void setup() {
Serial.begin(9600);

}

void loop() {
int adcValue = analogRead(PIN_ANALOG_IN); //read ADC pin
double voltage = (float)adcValue / 4095.0 * 3.3; // calculate voltage
double Rt = (3.3 - voltage) / voltage * 4.7; //calculate␣

→˓resistance value of thermistor
double tempK = 1 / (1 / (273.15 + 25) + log(Rt / 10) / 3950.0); //calculate␣

→˓temperature (Kelvin)
double tempC = tempK - 273.15; //calculate␣

→˓temperature (Celsius)
Serial.printf("ADC value : %d,\tVoltage : %.2fV, \tTemperature : %.2fC\n", adcValue,␣

→˓voltage, tempC);
delay(1000);

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on, open the serial monitor and set the baud rate to 9600. The
serial monitor will display the thermistor’s ADC value, DAC value and voltage value, as shown below:

6.2. 2. Basic Projects 401

keyestudio WiKi

6.2.25 Project 25: Thin-film Pressure Sensor

Overview
In this kit, there is a Keyestudio thin-film pressure sensor, which is composed of a new type of nano pressure-sensitive
material and a comfortable ultra-thin film substrate, has waterproof and pressure-sensitive functions.

In the experiment, we determine the pressure by collecting the analog signal on the S end of the module. The smaller
the ADC value, DAC value and voltage value, the greater the pressure; and the displayed results will shown on the

402 Chapter 6. Arduino tutorial

keyestudio WiKi

Shell.

Working Principle
When the sensor is pressed by external forces, the resistance value of sensor will vary. We convert the pressure signals
detected by the sensor into the electric signals through a circuit. Then we can obtain the pressure changes by detecting
voltage signal changes.

Components

Connection Diagram

6.2. 2. Basic Projects 403

keyestudio WiKi

Test Code

//**
/*
* Filename : Film pressure sensor
* Description : Read the basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 34 //the pin of the Film pressure sensor
void setup() {
Serial.begin(9600);

}

//In loop()the analogRead() function is used to obtain the ADC value,
//and then the map() function is used to convert the value into an 8-bit precision DAC␣
→˓value.
//The input and output voltage are calculated according to the previous formula,
//and the information is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After

404 Chapter 6. Arduino tutorial

keyestudio WiKi

uploading successfullywe will use a USB cable to power on, open the serial monitor and set the baud rate to 9600. The
serial monitor will display the thin-film’s ADC value, DAC value and voltage value, when the thin-film is pressed by
fingers, the analog value will decrease, as shown below;

6.2.26 Project 26: Flame Sensor

Description

6.2. 2. Basic Projects 405

keyestudio WiKi

In daily life, it is often seen that a fire broke out without any precaution. It will cause great economic and human loss.
So how can we avoid this situation? Right, install a flame sensor and a speaker in those places that easily break out a
fire. When the flame sensor detects a fire, the speaker will alarm people quickly to put out the fire.

So in this project, you will learn how to use a flame sensor and an active buzzer module to simulate the fire alarm
system.

Working Principle
This flame sensor can be used to detect fire or other light sources with wavelength stands at 700nm ~ 1000nm. Its
detection angle is about 60°. You can rotate the potentiometer on the sensor to control its sensitivity. Adjust the
potentiometer to make the LED at the critical point between on and off state. The sensitivity is the best.

From the below figure, power up. When detecting fire, the digital pin outputs low levels, the red LED2 will light up first,
the digital signal terminal D0 outputs a low level, and the red LED1 will light up. The stronger the external infrared
light, the smaller the value; the weaker the infrared light, the larger the value.

Required Components

406 Chapter 6. Arduino tutorial

keyestudio WiKi

Connection Diagram

Test Code

//**
/*
* Filename : Flame sensor
* Description : Read the basic usage of DigitalADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
//Flame sensor two pins 13, 34, respectively
#define PIN_ANALOG_IN 34
int digitalPin = 13;

//The following two variables hold the digital signal and adc values respectively
int analogVal = 0;
int adcVal = 0;

(continues on next page)

6.2. 2. Basic Projects 407

keyestudio WiKi

(continued from previous page)

void setup() {
Serial.begin(9600);
pinMode(digitalPin, INPUT); //Digital pin 13 is set to input mode

}

//In loop()the digitalRead()function is used to obtain the digital value,
//the analogRead() function is used to obtain the ADC value.
//the map() function is used to convert the value into an 8-bit precision DAC value.
//The input and output voltage are calculated according to the previous formula, and the␣
→˓information is finally printed out.
void loop() {
int digitalVal = digitalRead(digitalPin); //Read digital signal;
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("digitalVal: %d, \t ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n",

→˓digitalVal, adcVal, dacVal, voltage);
delay(200);

}
//**

Code Explanation
Two pins we use are defined as GPIO13 and GPIO34 according to the wiring-up diagram, and print digital signals and
analog signals respectively.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Rotating the potentiometer on the sensor, we can adjust
the red LED bright and not bright critical point. The red LED2 on the sensor module is lit, while the red LED1 is not.
Open the monitor and set baud rate to 9600. The “Shell” window will display the digital value, ADC value, DAC value
and voltage value of the flame sensor. When fire is detected, the LED1 will be on. the digital value will change from 1
to 0, and the analog value will become smaller, as shown below.

408 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.27 Project 27: MQ-2 Gas Sensor

Description
This analog gas sensor - MQ2 is used in gas leakage detecting equipment in consumer electronics and industrial markets.

This sensor is suitable for detecting LPG, I-butane, propane, methane, alcohol, Hydrogen and smoke. It has high
sensitivity and quick response.

In addition, the sensitivity can be adjusted by rotating the potentiometer.

In the experiment, we read the analog value at the A0 port and the D0 port to determine the content of gas.

Working Principle
The greater the concentration of smoke, the greater the conductivity, the lower the output resistance, the greater the
output analog signal.

When in use, the A0 terminal reads the analog value of the corresponding gas; the D0 terminal is connected to an
LM393 chip (voltage comparator), we can adjust the alarm threshold of the measured gas through the potentiometer,
and output the digital value at D0. When the measured gas content exceeds the critical point, the D0 terminal outputs
a low level; when the measured gas content does not exceed the critical point, the D0 terminal outputs a high level.

6.2. 2. Basic Projects 409

keyestudio WiKi

Required Components

Connection Diagram

410 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : MQ2
* Description : Read the basic usage of Digital, ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
//MQ_2 two pins 13, 34, respectively
#define PIN_ANALOG_IN 34
int digitalPin = 13;

//The following two variables hold the digital signal and adc values respectively
int analogVal = 0;
int adcVal = 0;

void setup() {
Serial.begin(9600);
pinMode(digitalPin, INPUT); //Digital pin 13 is set to input mode

}

//In loop()the digitalRead()function is used to obtain the digital value,
//the analogRead() function is used to obtain the ADC value.
//and then the map() function is used to convert the value into an 8-bit precision DAC␣
→˓value.

(continues on next page)

6.2. 2. Basic Projects 411

keyestudio WiKi

(continued from previous page)

//The input and output voltage are calculated according to the previous formula,
//and the information is finally printed out.
void loop() {
int digitalVal = digitalRead(digitalPin); //Read digital signal;
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("digitalVal: %d, \t ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n",

→˓digitalVal, adcVal, dacVal, voltage);
if (digitalVal == 1) {
Serial.println(" Normal");

}
else {
Serial.println(" Exceeding");

}
delay(100); //Delay time 100 ms

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32.

After uploading successfullywe will use a USB cable to power on. Rotating the potentiometer on the sensor, we can
adjust the red LED bright and not bright critical point. Open the monitor , set baud rate to 9600 and display the
corresponding data and characters. When the sensor detects the smoke or combustible gas, the red LED lights up and
the digital value changes from 1 to 0, the ADC value, DAC value and voltage value increase, as shown below.

412 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.28 Project 28: MQ-3 Alcohol Sensor

Description
In this kit, there is a MQ-3 alcohol sensor, which uses the gas-sensing material is tin dioxide (SnO2) which has a low
conductivity in clean air. When there is alcohol vapor in the environment where the sensor is located, the conductivity
of the sensor increases with the increase of the alcohol gas concentration in the air. The change in conductivity can be
converted into an output signal corresponding to the gas concentration using a simple circuit.

In the experiment, we read the analog value at the A0 end of the sensor and the digital value at the D0 end to judge the
content of alcohol vapor in the air and whether they exceed the standard.

Working Principle
At a certain temperature, the conductivity changes with the composition of the ambient gas. When in use, A0 terminal
reads the analog value corresponding to alcohol vapor; D0 terminal is connected to an LM393 chip (comparator), we
can adjust and measure the alcohol vapor alarm threshold through the potentiometer, and output the digital value at
D0. When the measured alcohol vapor content exceeds the critical point, the D0 terminal outputs a low level; when the
measured alcohol vapor content does not exceed the critical point, the D0 terminal outputs a high level.

6.2. 2. Basic Projects 413

keyestudio WiKi

Components Required

Connection Diagram

414 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : MQ3
* Description : Read the basic usage of Digital, ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
//MQ_3 two pins 13, 34, respectively
#define PIN_ANALOG_IN 34
int digitalPin = 13;

//The following two variables hold the digital signal and adc values respectively
int analogVal = 0;
int adcVal = 0;

void setup() {
Serial.begin(9600);
pinMode(digitalPin, INPUT); //Digital pin 13 is set to input mode

}

//In loop()the digitalRead()function is used to obtain the digital value,
//the analogRead() function is used to obtain the ADC value.
//and then the map() function is used to convert the value into an 8-bit precision DAC␣
→˓value.
//The input and output voltage are calculated according to the previous formula,
//and the information is finally printed out.
void loop() {
int digitalVal = digitalRead(digitalPin); //Read digital signal;
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);

(continues on next page)

6.2. 2. Basic Projects 415

keyestudio WiKi

(continued from previous page)

double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("digitalVal: %d, \t ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n",

→˓digitalVal, adcVal, dacVal, voltage);
if (digitalVal == 1) {
Serial.println(" Normal");

}
else {
Serial.println(" Exceeding");

}
delay(100); //Delay time 100 ms

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Rotating the potentiometer on the sensor, we can adjust
the yellow and green LED bright and not bright critical point. Open the monitor, set baud rate to 9600 and display the
corresponding data and characters. When the sensor detects the alcohol gas, the yellow and green LED lights up and
the digital value changes from 1 to 0, the ADC value, DAC value and voltage value decrease, as shown below.

416 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.29 Project 29: Five-key AD Button Module

Description
When we talked about analog and digital sensors earlier, we talked about the single-channel key module. When we
press the key, it outputs a low level, and when we release the key, it outputs a high level. We can only read these two
digital signals. In fact, the key module ADC acquisition can also be performed. In this kit, a DIY electronic building
block five-way AD button module is included.

We can judge which key is pressed through the analog value. In the experiment, we print out the key press information
in the shell.

Working Principle
Let’s look at the schematic diagram, when we do not press the key, the OUT of S output to the signal end is pulled down
by R1. At this time, we read the low level 0V. When we press the key SW1, the OUT of the output to the signal end S is
directly connected to the VCC. At this time, we read the high level 3.3V(the figure is marked as a 12-bit ADC(0~4095)
and VCC is 5V. The principle is the same. Here we have VCC of 3.3V and ADC mapped to 12 bits), which is an analog
value of 4095.

Next,when we press the key SW2, the OUT terminal voltage of the signal we read is the voltage between R2 and R1,
namely VCC*R1/(R2+R1), which is about 2.64V, and the analog value is about 3276.

When we press the key SW3, the OUT terminal voltage of the signal we read is the voltage between R2+R3 and R1,
namely VCC*R1/(R3+R2+R1), which is about 1.99V, and the analog value is about 2469.

When we press the key SW4, the OUT terminal voltage of the signal we read is the voltage between R2+R3+R4 and
R1, namely VCC*R1/(R4+R3+R2+R1), about 1.31V, and the analog value is about 1626.

Similarly, when we press the key SW5, the OUT terminal voltage of the signal we read is the voltage between
R2+R3+R4+R5 and R1, namely VCC*R1/(R5+R4+R3+R2+R1), which is about 0.68V, and the analog value is about
844. R4+R3+R2+R1), which is about 0.68V, and the analog value is about 844.

6.2. 2. Basic Projects 417

keyestudio WiKi

Components Required

Connection Diagram

418 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : Five AD Keys
* Description : Read the value of Five AD Keys
* Auther : http//www.keyestudio.com
*/
int val = 0;
int ADkey = 34; //Define five AD keys connected to GPIO36
void setup() {

Serial.begin(9600); //Set baud rate to 9600
}

void loop() {
val = analogRead(ADkey); //Read the simulated value of the AD key and assign it to␣

→˓the variable val
Serial.print(val); //A newline prints the variable val
if (val <= 500) { //Val is less than or equal to 500 when no button is pressed

Serial.println(" no key is pressed");
} else if (val <= 1000) { //When key 5 is pressed,val is between 500 and 1000
Serial.println(" SW5 is pressed");

} else if (val <= 2000) { //When pressed,val is between 1000 and 2000
Serial.println(" SW4 is pressed");

} else if (val <= 3000) { //When pressed,val is between 2000 and 3000
Serial.println(" SW3 is pressed");

} else if (val <= 4000) { //When key 2 is pressed,val is between 3000 and 4000
Serial.println(" SW2 is pressed");

} else { //When key 1 is pressed,val is greater than 4000
Serial.println(" SW1 is pressed");

}
}
//**

Code Explanation
We assign the read analog value to the variable val, and the serial monitor displays the value of val, (we set to 9600).

6.2. 2. Basic Projects 419

keyestudio WiKi

When the analog value is in the range of 500 and 1000, the button SW5 is pressed; when the analog value is in the 1000
and 2000, the button SW4 is pressed; when the analog value is between 2000 and 3000, the button SW3 is pressed;
when the analog value is between 3000 and 4000, the button SW2 is pressed. When the analog value is above 4000,
we judge that the button SW1 is pressed.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set baud rate to 9600; when
the button is pressed, the serial monitor prints out the corresponding information, as shown in the figure below.

420 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.30 Project 30: Joystick Module

Overview
Game handle controllers are ubiquitous. There is a joystick module in this kit, which mainly uses PS2 joysticks. When
controlling it, we need to connect the X and Y ports of the module to the analog port of the single-chip microcomputer,
port B to the digital port of the single-chip microcomputer, VCC to the power output port(3.3-5V), and GND to the
GND of the MCU. We can read the high and low levels of two analog values and one digital port) to determine the
working status of the joystick on the module.

In the experiment, two analog values(x axis and y axis) will be shown on the Shell.

Working Principle

6.2. 2. Basic Projects 421

keyestudio WiKi

In fact, its working principle is very simple. Its inside structure is equivalent to two adjustable potentiometers and
a button. When this button is not pressed and the module is pulled down by R1, low levels will be output ; on the
contrary, when the button is pressed, VCC will be connected (high levels). When we move the joystick, the internal
potentiometer will adjust to output different voltages, and we can read the analog value.

Components

Connection Diagram

422 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : Joystick
* Description : Read data from Rocker.
* Auther : http//www.keyestudio.com
*/
int xyzPins[] = {34, 35, 13}; //x,y,z pins
void setup() {
Serial.begin(9600);
pinMode(xyzPins[0], INPUT); //x axis.
pinMode(xyzPins[1], INPUT); //y axis.
pinMode(xyzPins[2], INPUT_PULLUP); //z axis is a button.

}

// In loop(), use analogRead () to read the value of axes X and Y
//and use digitalRead () to read the value of axis Z, then display them.
void loop() {
int xVal = analogRead(xyzPins[0]);
int yVal = analogRead(xyzPins[1]);
int zVal = digitalRead(xyzPins[2]);
Serial.println("X,Y,Z: " + String(xVal) + ", " + String(yVal) + ", " + String(zVal));
delay(500);

}
//**

Code Explanation
In the experiment, according to the wiring diagram, the x pin is set to GPIO34, the y pin is set to GPIO35 and the pin
of the joystick is set to GPIO13.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After

6.2. 2. Basic Projects 423

keyestudio WiKi

uploading successfullywe will use a USB cable to power on. Open the serial monitor and set baud rate to 9600;

The serial monitor will show the corresponding value. Moving the joystick or pressing it will change the analog and
digital values in the serial monitor .

424 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.31 Project 31: Relay Module

Overview
In our daily life, we usually use communication to drive electrical equipment, and sometimes we use switches to
control electrical equipment. If the switch is connected directly to the ac circuit, leakage occurs and people are in
danger. Therefore, from the perspective of safety, we specially designed this relay module with NO(normally open)
end and NC(normally closed) end.

Working Principle
Relay is compatible with a variety of microcontroller control board, such as Arduino series microcontroller, which is a
small current to control the operation of large current “automatic switch”.

Input Voltage3.3V-5V

It can let the MCU control board drive 3A load, such as an LED lamp belt, a DC motor, a micro water pump and a
solenoid valve pluggable interface design, which is easy to use.

Components Required

Connection Diagram

6.2. 2. Basic Projects 425

keyestudio WiKi

Test Code

//**
/*
* Filename : Relay
* Description : Relay turn on and off.
* Auther : http//www.keyestudio.com
*/
#define Relay 15 // defines digital 15
void setup()
{
pinMode(Relay, OUTPUT); // sets "Relay" to "output"
}
void loop()
{
digitalWrite(Relay, HIGH); // turns on the relay
delay(1000); //delays 1 seconds
digitalWrite(Relay, LOW); // turns off the relay
delay(1000); // delays 1 seconds
}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. The relay will cycle on and off, on for 1 second, off for
1 second. At the same time, you can hear the sound of the relay on and off as well as see the change of the indicator
light on the relay .

426 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.32 Project 32: SK6812 RGB Module

Overview
In previous lessons, we learned about the plug-in RGB module and used PWM signals to color the three pins of the
module.

There is a Keyestudio 6812 RGB module whose the driving principle is different from the plug-in RGB module. It
can only control with one pin. This is a set. It is an intelligent externally controlled LED light source with the control
circuit and the light-emitting circuit. Each LED element is the same as a 5050 LED lamp bead, and each component
is a pixel. There are four lamp beads on the module, which indicates four pixels.

In the experiment, we make different lights show different colors.

Working Principle

6.2. 2. Basic Projects 427

keyestudio WiKi

From the schematic diagram, we can see that these four pixel lighting beads are all connected in series. In fact, no
matter how many they are, we can use a pin to control a light and let it display any color. The pixel point contains a data
latch signal shaping amplifier drive circuit, a high-precision internal oscillator and a 12V high-voltage programmable
constant current control part, which effectively ensures the color of the pixel point light is highly consistent.

The data protocol adopts a single-wire zero-code communication method. After the pixel is powered up and reset, the
S terminal receives the data transmitted from the controller. The first 24bit data sent is extracted by the first pixel and
sent to the data latch of the pixel.

Components

Connection Diagram

Test Code

428 Chapter 6. Arduino tutorial

keyestudio WiKi

//**
/*
* Filename : sk6812 RGB LED
* Description : turn on sk6812 RGB LED
* Auther : http//www.keyestudio.com
*/
#include <Adafruit_NeoPixel.h>

#define PIN 15

// Parameter 1 = number of pixels in strip
// Parameter 2 = Arduino pin number (most are valid)
// Parameter 3 = pixel type flags, add together as needed:
// NEO_KHZ800 800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)
// NEO_KHZ400 400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)
// NEO_GRB Pixels are wired for GRB bitstream (most NeoPixel products)
// NEO_RGB Pixels are wired for RGB bitstream (v1 FLORA pixels, not v2)
Adafruit_NeoPixel strip = Adafruit_NeoPixel(60, PIN, NEO_GRB + NEO_KHZ800);

// IMPORTANT: To reduce NeoPixel burnout risk, add 1000 uF capacitor across
// pixel power leads, add 300 - 500 Ohm resistor on first pixel's data input
// and minimize distance between Arduino and first pixel. Avoid connecting
// on a live circuit...if you must, connect GND first.

void setup() {
strip.begin();
strip.show(); // Initialize all pixels to 'off'

}

void loop() {
// Some example procedures showing how to display to the pixels:
colorWipe(strip.Color(255, 0, 0), 50); // Red
colorWipe(strip.Color(0, 255, 0), 50); // Green
colorWipe(strip.Color(0, 0, 255), 50); // Blue
// Send a theater pixel chase in...
theaterChase(strip.Color(127, 127, 127), 50); // White
theaterChase(strip.Color(127, 0, 0), 50); // Red
theaterChase(strip.Color(0, 0, 127), 50); // Blue

rainbow(20);
rainbowCycle(20);
theaterChaseRainbow(50);

}

// Fill the dots one after the other with a color
void colorWipe(uint32_t c, uint8_t wait) {
for(uint16_t i=0; i<strip.numPixels(); i++) {

strip.setPixelColor(i, c);
strip.show();
delay(wait);

}
}

(continues on next page)

6.2. 2. Basic Projects 429

keyestudio WiKi

(continued from previous page)

void rainbow(uint8_t wait) {
uint16_t i, j;

for(j=0; j<256; j++) {
for(i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel((i+j) & 255));

}
strip.show();
delay(wait);

}
}

// Slightly different, this makes the rainbow equally distributed throughout
void rainbowCycle(uint8_t wait) {
uint16_t i, j;

for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
for(i=0; i< strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));

}
strip.show();
delay(wait);

}
}

//Theatre-style crawling lights.
void theaterChase(uint32_t c, uint8_t wait) {
for (int j=0; j<10; j++) { //do 10 cycles of chasing
for (int q=0; q < 3; q++) {
for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, c); //turn every third pixel on

}
strip.show();

delay(wait);

for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off

}
}

}
}

//Theatre-style crawling lights with rainbow effect
void theaterChaseRainbow(uint8_t wait) {
for (int j=0; j < 256; j++) { // cycle all 256 colors in the wheel
for (int q=0; q < 3; q++) {

for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, Wheel((i+j) % 255)); //turn every third pixel on

}
strip.show();

(continues on next page)

430 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

delay(wait);

for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off

}
}

}
}

// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
if(WheelPos < 85) {
return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
} else if(WheelPos < 170) {
WheelPos -= 85;
return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
} else {
WheelPos -= 170;
return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
}

}
//***

Test Code
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Then we can see the four RGB LED are lighting in various
colors.

6.2. 2. Basic Projects 431

keyestudio WiKi

6.2.33 Project 33: Rotary Encoder

Overview
In this kit, there is a Keyestudio rotary encoder, dubbed as switch encoder. It is applied to automotive electronics,
multimedia audio, instrumentation, household appliances, smart home, medical equipment and so on.

In the experiment, it is used for counting. When we rotate the rotary encoder clockwise, the set data adds 1; if you
rotate it anticlockwise, the set data substructs1; and when the middle button is pressed, the value will be show in the
serial monitor.

Working Principle

432 Chapter 6. Arduino tutorial

keyestudio WiKi

The incremental encoder converts the displacement into a periodic electric signal, and then converts this signal into a
counting pulse, and the number of pulses indicates the size of the displacement.

This module mainly uses 20-pulse rotary encoder components. It can calculate the number of pulses output during
clockwise and reverse rotation. There is no limit to count rotation. It resets to the initial state, that is, starts counting
from 0.

Components

Connection Diagram

6.2. 2. Basic Projects 433

keyestudio WiKi

Test Code

//**
/*
* Filename : Encoder
* Description : Rotary encoder module counting.
* Auther : http//www.keyestudio.com
*/
//Interfacing Rotary Encoder with Arduino
//Encoder Switch -> pin 27
//Encoder DT -> pin 14
//Encoder CLK -> pin 12

int Encoder_DT = 14;
int Encoder_CLK = 12;
int Encoder_Switch = 27;

int Previous_Output;
int Encoder_Count;

void setup() {
Serial.begin(9600);

//pin Mode declaration
pinMode (Encoder_DT, INPUT);
pinMode (Encoder_CLK, INPUT);
pinMode (Encoder_Switch, INPUT);

Previous_Output = digitalRead(Encoder_DT); //Read the inital value of Output A
}

void loop() {
//aVal = digitalRead(pinA);

if (digitalRead(Encoder_DT) != Previous_Output)
(continues on next page)

434 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

{
if (digitalRead(Encoder_CLK) != Previous_Output)
{
Encoder_Count ++;
Serial.println(Encoder_Count);

}
else
{
Encoder_Count--;
Serial.println(Encoder_Count);

}
}

Previous_Output = digitalRead(Encoder_DT);

if (digitalRead(Encoder_Switch) == 0)
{
delay(5);
if (digitalRead(Encoder_Switch) == 0) {

Serial.println("Switch pressed");
while (digitalRead(Encoder_Switch) == 0);

}
}

}
//**

Code Explanation
Set CLK to GPIO12 and DAT to GPIO14.

This code is set well in the library file. When CLK descends, read the voltage of DAT, when DAT is a HIGH level, the
value of the rotary encoder is added by 1; when DAT is a LOW level, the value of the rotary encoder is cut down 1.

Set the pin of the button(GPIO27) to LOW and print.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set baud rate to 9600;

Rotate the knob on the rotary encoder clockwise, the displayed data will increase; on the contrary, in anticlockwise
way, the data will decrease. Equally, press the button on the rotary encoder,“Switch pressed”will be shown.

6.2. 2. Basic Projects 435

keyestudio WiKi

6.2.34 Project 34: Servo Control

Overview
Servo motor is a position control rotary actuator. It mainly consists of a housing, a circuit board, a core-less motor, a
gear and a position sensor.

436 Chapter 6. Arduino tutorial

keyestudio WiKi

In general, servo has three lines in brown, red and orange. The brown wire is grounded, the red one is a positive pole
line and the orange one is a signal line.

Working Principle

The rotation angle of servo motor is controlled by regulating the duty cycle of PWM (Pulse-Width Modulation) signal.
The standard cycle of PWM signal is 20ms (50Hz).

Theoretically, the width is distributed between 1ms-2ms, but in fact, it’s between 0.5ms-2.5ms. The width corresponds
the rotation angle from 0° to 180°. But note that for different brand motors, the same signal may have different rotation
angles.

6.2. 2. Basic Projects 437

keyestudio WiKi

Components

Connection Diagram

438 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code 1

//**
/*
* Filename : Servo_1
* Description : Steering gear rotation Angle 0-90-180, repeatly
* Auther : http//www.keyestudio.com
*/
int servoPin = 4;//steering gear PIN

void setup() {
pinMode(servoPin, OUTPUT);//steering pin is set to output

}
void loop() {
servopulse(servoPin, 0);//Rotate it to zero degrees
delay(1000);//delay 1S
servopulse(servoPin, 90);//Rotate it to 90 degrees
delay(1000);
servopulse(servoPin, 180);//Rotate it to 180 degrees
delay(1000);

}

void servopulse(int pin, int myangle) { //Impulse function
int pulsewidth = map(myangle, 0, 180, 500, 2500); //Map Angle to pulse width
for (int i = 0; i < 10; i++) { //Output a few more pulses
digitalWrite(pin, HIGH);//Set the steering gear interface level to high
delayMicroseconds(pulsewidth);//The number of microseconds of delayed pulse width␣

→˓value
digitalWrite(pin, LOW);//Lower the level of steering gear interface
delay(20 - pulsewidth / 1000);

}
}
//**

Code Explanation 1
map(value, fromLow, fromHigh, toLow, toHigh)

6.2. 2. Basic Projects 439

keyestudio WiKi

Value is the value we map. fromLow, fromHigh is the maximum and minimum value, toLow, toHigh are the upper
limit and lower limit we map.

For example, map(myangle, 0, 180, 500, 2500) means that an angle value myangle (0°-180°the mapping range is from
500us to 2500us.

We use the function servopulse() to make the servo move. We also make the servo rotate 0°, 90°and 180°cyclically.

Test Result 1
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on, the servo will rotate 0°90° and 180° cyclically.

Test Code 2

//**
/*
* Filename : Servo Sweep
* Description : Control the servo motor for sweeping
* Auther : http//www.keyestudio.com
*/
#include <ESP32Servo.h>

Servo myservo; // create servo object to control a servo

int posVal = 0; // variable to store the servo position
int servoPin = 4; // Servo motor pin

void setup() {
myservo.setPeriodHertz(50); // standard 50 hz servo
myservo.attach(servoPin, 500, 2500); // attaches the servo on servoPin to the servo␣

→˓object
}
void loop() {

for (posVal = 0; posVal <= 180; posVal += 1) { // goes from 0 degrees to 180 degrees
// in steps of 1 degree
myservo.write(posVal); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position

}
for (posVal = 180; posVal >= 0; posVal -= 1) { // goes from 180 degrees to 0 degrees

myservo.write(posVal); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position

}
}
//**

Code Explanation 2
myservo. write (pos) is the rotation angle to POS. myservo. read () reads the current angle value of the servo.

Test Result 2
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on, the servo will rotate from 0° to 180° by moving 1° for
each 15ms.

440 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.35 Project 35: Ultrasonic Sensor

Bats and some marine animals are able to use high frequencies of sound for echolocation or communication. They can
emit ultrasonic waves from the larynx through the mouth or nose and use the sound waves that bounce back to orient
and determine the position, size and whether nearby objects are moving.

Ultrasonic is a frequency higher than 20000 Hz sound wave, which has a good direction, a strong penetration ability,
and is easy to obtain more concentrated sound energy as well as spread far in the water. It can be used for ranging,
speed measurement, cleaning, welding, gravel, sterilization and disinfection. What‘s more, it has many applications in
medicine, military, industry and agriculture.

Overview
In this kit, there is a keyes HC-SR04 ultrasonic sensor, which can detect obstacles in front and the detailed distance
between the sensor and the obstacle. Its principle is the same as that of bat flying. It can emit the ultrasonic signals that
cannot be heard by humans. When these signals hit an obstacle and come back immediately. The distance between the
sensor and the obstacle can be calculated by the time gap of emitting signals and receiving signals.

In the experiment, we use the sensor to detect the distance between the sensor and the obstacle, and print the test result.

Working Principle
The most common ultrasonic ranging method is the echo detection. As shown below; when the ultrasonic emitter emits
the ultrasonic waves towards certain direction, the counter will count. The ultrasonic waves travel and reflect back once
encountering the obstacle. Then the counter will stop counting when the receiver receives the ultrasonic waves coming
back.

The ultrasonic wave is also sound wave, and its speed of sound V is related to temperature. Generally, it travels 340m/s
in the air. According to time t, we can calculate the distance s from the emitting spot to the obstacle. $𝑠 = 340𝑡/2$
The HC-SR04 ultrasonic ranging module can provide a non-contact distance sensing function of 2cm-400cm, and the

6.2. 2. Basic Projects 441

keyestudio WiKi

ranging accuracy can reach as high as 3mm; the module includes an ultrasonic transmitter, receiver and control circuit.
Basic working principle:

1). First pull down the TRIG, and then trigger it with at least 10us high level signal;

2). After triggering, the module will automatically transmit eight 40KHZ square waves, and automatically detect
whether there is a signal to return.

3). If there is a signal returned back, through the ECHO to output a high level, the duration time of high level is actually
the time from emission to reception of ultrasonic.

𝑇𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐻𝑖𝑔ℎ𝐿𝑒𝑣𝑒𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 * 340𝑚/𝑠 * 0.5

Components

Connection Diagram

442 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : Ultrasonic
* Description : Use the ultrasonic module to measure the distance.
* Auther : http//www.keyestudio.com
*/
const int TrigPin = 13; // define TrigPin
const int EchoPin = 14; // define EchoPin.
int duration = 0; // Define the initial value of the duration to be 0
int distance = 0;//Define the initial value of the distance to be 0
void setup()
{
pinMode(TrigPin , OUTPUT); // set trigPin to output mode
pinMode(EchoPin , INPUT); // set echoPin to input mode
Serial.begin(9600); // Open serial monitor at 9600 baud to see ping results.

}
void loop()
{
// make trigPin output high level lasting for 10s to triger HC_SR04
digitalWrite(TrigPin , HIGH);
delayMicroseconds(10);
digitalWrite(TrigPin , LOW);
// Wait HC-SR04 returning to the high level and measure out this waitting time
duration = pulseIn(EchoPin , HIGH);
// calculate the distance according to the time
distance = (duration/2) / 28.5 ;
Serial.print("Distance: ");
Serial.print(distance); //Serial port print distance value
Serial.println("cm");
delay(300); // Wait 100ms between pings (about 20 pings/sec).

}
//**

Test Result

6.2. 2. Basic Projects 443

keyestudio WiKi

Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set baud rate to 9600.

The serial monitor will print the distance between the ultrasonic sensor and the object.

444 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.36 Project 36: IR Receiver Module

Overview
Infrared remote control is currently the most widely used means of communication and remote control, which has
the characteristics of small volume, low power consumption, strong function and low cost. Therefore, recorder, audio
equipment, air conditioning machine and toys and other small electrical devices have also used the infrared remote
control.

Its transmitting circuit is the use of infrared light emitting diode to emit modulated infrared light wave. The circuit
is composed of infrared receiving diode, triode or silicon photocell. They convert infrared light emitted by infrared
emitter into corresponding electrical signal, and then send back amplifier.

In this experiment, we need to know how to use the infrared receiving sensor. The infrared receiving sensor mainly uses
the VS1838B infrared receiving sensor element. It integrates receiving, amplifying, and demodulating. The internal
IC has already completed the demodulation, and the output is a digital signal. It can receive 38KHz modulated remote
control signal.

In the experiment, we use the IR receiver to receive the infrared signal emitted by the external infrared transmitting
device, and display the received signal in the shell.

Working Principle
The main part of the IR remote control system is modulation, transmission and reception. The modulated carrier
frequency is generally between 30khz and 60khz, and most of them use a square wave of 38kHz and a duty ratio of 1/3.
A 4.7K pull-up resistor R3 is added to the signal end of the infrared receiver.

6.2. 2. Basic Projects 445

keyestudio WiKi

Components

Connection Diagram

446 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : IR Receiver
* Description : Decode the infrared remote control and print it out through the serial␣
→˓port.
* Auther : http//www.keyestudio.com
*/
#include <Arduino.h>
#include <IRremoteESP8266.h>
#include <IRrecv.h>
#include <IRutils.h>

const uint16_t recvPin = 15; // Infrared receiving pin
IRrecv irrecv(recvPin); // Create a class object used to receive class
decode_results results; // Create a decoding results class object

void setup() {
Serial.begin(9600); // Initialize the serial port and set the baud rate to 9600
irrecv.enableIRIn(); // Start the receiver
Serial.print("IRrecvDemo is now running and waiting for IR message on Pin ");
Serial.println(recvPin); //print the infrared receiving pin

}

void loop() {
if (irrecv.decode(&results)) { // Waiting for decoding
serialPrintUint64(results.value, HEX);// Print out the decoded results
Serial.println("");
irrecv.resume(); // Release the IRremote. Receive the next value

}
delay(1000);

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32.

6.2. 2. Basic Projects 447

keyestudio WiKi

After uploading successfully, we will use a USB cable to power on. Open the serial monitor and set baud rate to 9600;
Find the infrared remote control, pull out the insulating sheet, and press the button at the receiving head of the infrared
receiving sensor. After receiving the signal, the LED on the infrared receiving sensor also starts to flash, as shown in
the figure below.

Write down the key code value associated with the infrared remote with each key, as you will need this information
later.

448 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.37 Project 37: DS18B20 Temperature Sensor

Description
In this kit, there is a DS18B20 temperature sensor, which is from maxim. The MCU can communicate with the
DS18B20 through 1-Wire protocol, and finally read the temperature.

In this experiment, we will use this temperature sensor to measure the temperature in the current environment. The test
result is ℃, ranging from -55℃ to +125℃. We will display the test result on shell.

Working Principle

6.2. 2. Basic Projects 449

keyestudio WiKi

The hardware interface of the 1-Wire bus is very simple, just connect the data pin of the DS18B20 to an IO port of
the microcontroller. The timing of the 1-Wire bus is relatively complex. Many students can’t understand the timing
diagram independently here. We have encapsulated the complex timing operations in the library, and you can use the
library functions directly.

Schematic Diagram of DS18B20
This can save up to 12-bit temperature vale. In the register, save in code complement. As shown below;

A total of 2 bytes, LSB is the low byte, MSB is the high byte, where MSb is the high byte of the byte, LSb is the
low byte of the byte. As you can see, the binary number, the meaning of the temperature represented by each bit, is
expressed. Among them, S represents the sign bit, and the lower 11 bits are all powers of 2, which are used to represent
the final temperature. The temperature measurement range of DS18B20 is from -55 degrees to +125 degrees, and the
expression form of temperature data, S represents positive and negative temperature, and the resolution is 2, which is
0.0625.

Required Components

450 Chapter 6. Arduino tutorial

keyestudio WiKi

Required Components

Test Code

//**
/*
* Filename : ds18b20
* Description : Read the temperature of ds18B20
* Auther : http//www.keyestudio.com
*/
#include <DS18B20.h>

//ds18b20 pin to 15
DS18B20 ds18b20(15);

void setup() {
Serial.begin(9600);

}

void loop() {
double temp = ds18b20.GetTemp();//Read the temperature

(continues on next page)

6.2. 2. Basic Projects 451

keyestudio WiKi

(continued from previous page)

temp *= 0.0625;//The conversion accuracy is 0.0625/LSB
Serial.print("Temperature: ");
Serial.print(temp);
Serial.println("C");
delay(1000);

}
//**

Code Explanation
We set the pin to GPIO15 and obtain the temperature in the unit of ℃.

Set a double decimal variable to temp, and assign the measured result to temp.

The serial monitor displays the temp value, and the baud rate needs to be set before displaying (our default setting is
9600, which can be changed).

We add the unit behind the data. If the unit is directly set to °C, the test result will be garbled. So we directly replace
℃ with C.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set baud rate to 9600; The
monitor will display the temperature of the current environment, as shown below.

452 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.38 Project 38: XHT11 Temperature and Humidity Sensor

Description
This DHT11 temperature and humidity sensor is a composite sensor which contains a calibrated digital signal output
of the temperature and humidity.

DHT11 temperature and humidity sensor uses the acquisition technology of the digital module and temperature and
humidity sensing technology, ensuring high reliability and excellent long-term stability.

It includes a resistive element and a NTC temperature measuring device.

6.2. 2. Basic Projects 453

keyestudio WiKi

Working Principle
The communication and synchronization between the single-chip microcomputer and XHT11 adopts the single bus
data format. The communication time is about 4ms. The data is divided into fractional part and integer part.

Operation process: A complete data transmission is 40bit, high bit first out. Data format: 8bit humidity integer data +
8bit humidity decimal data + 8bit temperature integer data + 8bit temperature decimal data + 8bit checksum

8-bit checksum: 8-bit humidity integer data + 8-bit humidity decimal data + 8-bit temperature integer data + 8-bit
temperature decimal data “Add the last 8 bits of the result.

Required Components

454 Chapter 6. Arduino tutorial

keyestudio WiKi

Connection Diagram

Test Code

//**
/*
* Filename : xht11
* Description : Read the temperature and humidity values of XHT11.
* Auther : http//www.keyestudio.com

(continues on next page)

6.2. 2. Basic Projects 455

keyestudio WiKi

(continued from previous page)

*/
#include "xht11.h"
//gpio15
xht11 xht(15);

unsigned char dht[4] = {0, 0, 0, 0};//Only the first 32 bits of data are received, not␣
→˓the parity bits
void setup() {

Serial.begin(9600);//Start the serial port monitor and set baud rate to 9600
}

void loop() {
if (xht.receive(dht)) { //Returns true when checked correctly
Serial.print("RH:");
Serial.print(dht[0]); //The integral part of humidity, DHT [1] is the fractional part
Serial.print("% ");
Serial.print("Temp:");
Serial.print(dht[2]); //The integral part of temperature, DHT [3] is the fractional␣

→˓part
Serial.println("C");

} else { //Read error
Serial.println("sensor error");

}
delay(1000); //It takes 1000ms to wait for the device to read

}
//**

Code Explanation
1). We set the pin to GPIO15, and store the detected temperature and humidity data in the dht[4] array. 2). We add
units behind the data. If the temperature unit is directly set to °C, the test results may be wrong, so we directly replace
°C with C; the humidity unit is directly set to %.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. Open the serial monitor and set baud rate to 9600; The
monitor will display the temperature and humidity data of the current environment, as shown below.

456 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2. 2. Basic Projects 457

keyestudio WiKi

6.2.39 Project 39: DS1307 Clock Module

Overview
This module mainly uses the real-time clock chip DS1307, which is the I2C bus interface chip that has second, minute,
hour, day, month, year and other functions as well as leap year automatic adjustment function introduced by DALLAS.
It can work independently of CPU, and won‘t’ affected by the CPU main crystal oscillator and capacitance as well
as keep accurate time. What‘s more, monthly cumulative error is generally less than 10 s. The chip also has a clock
protection circuit in case of main power failure and runs on a back-up battery that denies the CPU read and write access.

At the same time, it contains automatic switching control circuit of standby power supply, making it guarantees the
accuracy of system clock in case of power failure of main power supply and other bad environment.

Going forward, the DS1307 chip internal integration has a certain capacity, with power failure protection characteristics
of static RAM, which can be used to save some key data.

In the experiment, we use the DS1307 clock module to obtain the system time and print the test results.

458 Chapter 6. Arduino tutorial

keyestudio WiKi

Working Principle
Serial real-time clock records year, month, day, hour, minute, second and week; AM and PM indicate morning and
afternoon respectively; 56 bytes of NVRAM store data; 2-wire serial port; programmable square wave output; power
failure detection and automatic switching circuit; battery current is less than 500nA.

Pins description:

X1, X2: 32.768kHz crystal terminal

VBAT: +3V input

SDA: serial data

SCL: serial clock

SQW/OUT: square waves/output drivers

Components

Connection Diagram

6.2. 2. Basic Projects 459

keyestudio WiKi

Test Code

//**
/*
* Filename : DS1307 Real Time Clock
* Description : Read the year/month/day/hour/minute/second/week of DS1307 clock module
* Auther : http//www.keyestudio.com
*/
#include <Wire.h>
#include "RtcDS1307.h" //DS1307 clock module library

RtcDS1307<TwoWire> Rtc(Wire);//i2cport

void setup(){
Serial.begin(57600);//Set baud rate to 57600
Rtc.Begin();
Rtc.SetIsRunning(true);

Rtc.SetDateTime(RtcDateTime(__DATE__, __TIME__));
}

void loop(){
// Print year/month/day/hour/minute/second/week
Serial.print(Rtc.GetDateTime().Year());
Serial.print("/");
Serial.print(Rtc.GetDateTime().Month());
Serial.print("/");
Serial.print(Rtc.GetDateTime().Day());
Serial.print(" ");
Serial.print(Rtc.GetDateTime().Hour());
Serial.print(":");
Serial.print(Rtc.GetDateTime().Minute());
Serial.print(":");
Serial.print(Rtc.GetDateTime().Second());

(continues on next page)

460 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

Serial.print(" ");
Serial.println(Rtc.GetDateTime().DayOfWeek());
delay(1000);//Delay 1 second

}
//**

Code Explanation
Rtc.GetDateTime(): the obtained current time and date.

Rtc.Begin(): enable DS1307 real-time clock.

Rtc.SetIsRunning(true): run the DS1307 real-time clock, if true changes into false, time will stop.

Rtc.SetDateTime(): set time.

Rtc.GetDateTime().Year(): return year.

Rtc.GetDateTime().Month(): return month.

Rtc.GetDateTime().Day(): return date.

Rtc.GetDateTime().Hour(): return hour.

Rtc.GetDateTime().Minute(): return minute.

Rtc.GetDateTime().Second(): return second.

Rtc.GetDateTime().DayOfWeek(): return week.

Test Result
Connect the wires according to the experimental wiring diagram, attach the DS1307 sensor to a battery, compile and
upload the code to the ESP32. After uploading successfully, we will use a USB cable to power on.

Open the serial monitor and set baud rate to 57600. We can see the displayed year, month, day, hour, minute, second
and week on the serial monitor, and set the time and date to refresh every second, as shown below:

6.2. 2. Basic Projects 461

keyestudio WiKi

6.2.40 Project 40: ADXL345 Acceleration Sensor

Overview
In this kit, there is a DIY electronic building block ADXL345 acceleration sensor module, which uses the
ADXL345BCCZ chip. The chip is a small, thin, low-power 3-axis accelerometer with a high resolution (13 bits)
and a measurement range of ±16g that can measure both dynamic acceleration due to motion or impact as well as
stationary acceleration such as gravitational acceleration, making the device usable as a tilt sensor.

Working Principle

462 Chapter 6. Arduino tutorial

keyestudio WiKi

The ADXL345 is a complete 3-axis acceleration measurement system with a selection of measurement ranges of ±2
g, ±4 g, ±8 g or ±16 g. Its digital output data is in 16-bit binary complement format and can be accessed through an
SPI (3-wire or 4-wire) or I2C digital interface.

The sensor can measure static acceleration due to gravity in tilt detection applications, as well as dynamic acceleration
due to motion or impact. Its high resolution (3.9mg/LSB) enables measurement of tilt Angle changes of less than 1.0°.

Components Required

Connection Diagram

6.2. 2. Basic Projects 463

keyestudio WiKi

Test Code

//**
/*
* Filename : ADXL345
* Description : Read the X/Y/Z value of ADXL345
* Auther : http//www.keyestudio.com
*/
#include "adxl345_io.h"
//The port is sda-->21,scl-->22
adxl345 adxl345(21, 22);

float out_X, out_Y, out_Z;

void setup() {
Serial.begin(57600);//Start serial port monitoring and set baud rate to 57600
adxl345.Init();

}

void loop() {
adxl345.readXYZ(&out_X, &out_Y, &out_Z);
Serial.print(out_X);
Serial.print("g ");
Serial.print(out_Y);
Serial.print("g ");
Serial.print(out_Z);
Serial.println("g");
delay(100);

}
//**

Code Explanation
Set 3 decimal variables out_X out_Y out_Z, and assign the measured result to out_X out_Y out_Z. The serial monitor
displays the value of out_X out_Y out_Z, and the baud rate needs to be set before displaying (our default setting is
57600, which can be changed).

464 Chapter 6. Arduino tutorial

keyestudio WiKi

Adxl345.Init; Initialize the ADXX345 accelerometer.

adxl345.readXYZ(&out_X, &out_Y, &out_Z); Get the acceleration value of the X axis and return it to the variables
out_X, out_Y, out_Z.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. Open the serial monitor and set baud rate to 57600.

The serial monitor displays the value corresponding to the sensor, the unit is mg, as shown in the figure below.

6.2. 2. Basic Projects 465

keyestudio WiKi

6.2.41 Project 41: TM1650 4-Digit Tube Display

Overview
This module is mainly composed of a 0.36 inch red common cathode 4-digit digital tube, and its driver chip is TM1650.
When using it, we only need two signal lines to make the single-chip microcomputer control a 4-bitdigit tube, which
greatly saves the IO port resources of the control board.

TM1650 is a special circuit for LED (light emitting diode display) drive control. It integrates MCU input and output
control digital interface, data latch, LED drivers, keyboard scanning, brightness adjustment and other circuits.

TM1650 has stable performance, reliable quality and strong anti-interference ability.

It can be applied to the application of long-term continuous working for 24 hours.

TM1650 uses 2-wire serial transmission protocol for communication (note that this data transmission protocol is not a
standard I2C protocol). The chip can drive the digital tube and save MCU pin resources through two pins and MCU
communication.

Working Principle
TM1650 adopts IIC treaty, which uses DIO and CLK buses.

466 Chapter 6. Arduino tutorial

keyestudio WiKi

Data command setting: 0x48 means that we light up the digital tube, instead of enable the function of key scanning

Command display setting:
bit[6:4]: set the brightness of tube display, and 000 is brightest

bit[3]: set to show decimal points

bit[0]: start the display of the tube display

Components

6.2. 2. Basic Projects 467

keyestudio WiKi

Connection Diagram

Test Code

//**
/*
* Filename : TM1650 Four digital tube
* Description : TM1650 Four Digital Tube shows 0-9999
* Auther : http//www.keyestudio.com
*/
#include "TM1650.h"
#define CLK 22 //pins definitions for TM1650 and can be changed to other ports
#define DIO 21
TM1650 DigitalTube(CLK,DIO);

void setup(){
DigitalTube.setBrightness(); //set brightness, 0---7, default : 2
DigitalTube.displayOnOFF(); //display on or off, 0=display off, 1=display on,␣

→˓default : 1
(continues on next page)

468 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

for(char b=1;b<5;b++){
DigitalTube.clearBit(b); //DigitalTube.clearBit(0 to 3); Clear bit display.

}
// DigitalTube.displayDot(1,true); //Bit0 display dot. Use before displayBit().
DigitalTube.displayBit(1,0); //DigitalTube.Display(bit,number); bit=0---3 number=0-

→˓--9
}

void loop(){
for(int num=0; num<10000; num++){
displayFloatNum(num);
delay(100);

}
}

void displayFloatNum(float num){
if(num > 9999)
return;

int dat = num*10;
//DigitalTube.displayDot(2,true); //Bit0 display dot. Use before displayBit().
if(dat/10000 != 0){
DigitalTube.displayBit(1, dat%100000/10000);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%10000/1000 != 0){
DigitalTube.clearBit(1);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%1000/100 != 0){
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.clearBit(3);
DigitalTube.displayBit(4, dat%100/10);

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. The 4-digit tube display will show integer from 0 to 99999,
add 1 for each 10ms. Increase to 9999 then start from 0.

6.2. 2. Basic Projects 469

keyestudio WiKi

6.2.42 Project 42: HT16K33_8X8 Dot Matrix Module

Overview
What is the dot matrix display? If we apply the previous circuit, there will be must one IO port to control only one
LED. When more LED need to be controlled, we may adopt a dot matrix. The 8X8 dot matrix is composed of 64
light-emitting diodes, and each light-emitting diode is placed at the intersection of the row line and the column line.
Refer to the experimental schematic diagram below, when the corresponding column is set to a high level and a certain
row to low, the corresponding diode will light up. For instance, set pin 13 to a high level and pin 9 to low, and then the
first LED will light up. In the experiment, we display icons via this dot matrix.

Working Principle
As the schematic diagram shown, to light up the LED at the first row and column, we only need to set C1 to high level
and R1 to low level. To turn on LEDs at the first row, we set R1 to low level and C1-C8 to high level.

16 IO ports are needed, which will highly waste the MCU resources.

Therefore, we designed this module, using the HT16K33 chip to drive an 8*8 dot matrix, which greatly saves the
resources of the single-chip microcomputer.

470 Chapter 6. Arduino tutorial

keyestudio WiKi

There are three DIP switches on the module, all of which are set to I2C communication address. The setting method
is shown below. A0A1 and A2 are grounded, that is, the address is 0x70.

Components

6.2. 2. Basic Projects 471

keyestudio WiKi

Connection Diagram

Test Code

//**
/*
* Filename : 8×8 Dot-matrix Display
* Description : 8x8 LED dot matrix display“Heart” pattern.
* Auther : http//www.keyestudio.com
*/
#include "HT16K33_Lib_For_ESP32.h"

#define SDA 21
#define SCL 22

ESP32_HT16K33 matrix = ESP32_HT16K33();

//The brightness values can be set from 1 to 15, with 1 darkest and 15 brightest
#define A 15

(continues on next page)

472 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

byte result[8][8];
byte test1[8] = {0x00,0x42,0x41,0x09,0x09,0x41,0x42,0x00};

void setup()
{
matrix.init(0x70, SDA, SCL);//Initialize matrix
matrix.showLedMatrix(test1,0,0);
matrix.show();

}

void loop()
{
for (int i = 0; i <= 7; i++)
{
matrix.setBrightness(i);
delay(100);

}
for (int i = 7; i > 0; i--)
{
matrix.setBrightness(i);
delay(100);

}
}
//**

Code Explanation
First we need to import the library file.

The pattern in our code is an array of byte data type, which is shown in the table below.

We convert {0x00,0x42,0x41,0x09,0x09,0x41,0x42,0x00} into binary, and fill in the 8*8 form below to make it clear.
1 means on, 0 means off. Then we can see that it is a smile shape.

6.2. 2. Basic Projects 473

keyestudio WiKi

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Then the dot matrix displays a “ smile ”pattern.

474 Chapter 6. Arduino tutorial

keyestudio WiKi

6.2.43 Project 43: LCD_128X32_DOT Module

Description
This is a 128*32 pixel LCD module, which uses IIC communication mode and ST7567A driver chip . At the same
time, the code contains all the English letters and common symbols of the library that can be directly called. When
used, we can also set English letters and symbols to display different text sizes in our code.

To make it easy to set up the pattern display, we also provide a mold capture software that can convert a specific pattern
into control code and then copy it directly into the test code for use.

In the experiment, we will set up the display screen to display various English words, common symbols and numbers.

Working Principle

6.2. 2. Basic Projects 475

keyestudio WiKi

The module uses the IIC communication principle, the underlying functions have been encapsulated in the library
surface, we can directly call the library function, if interested, you can also go to understand the underlying driver of
the module.

Components

ESP32
Board*1

ESP32 Expansion
Board*1

Keyestudio LCD_128X32_DOT
Module*1

4P Dupont
Wire*1

Micro USB Ca-
ble*1

Connection Diagram

476 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : lcd128*32
* Description : Lcd128 *32 Displays character strings
* Auther : http//www.keyestudio.com
*/
#include "lcd128_32_io.h"

//Create lcd12832 examples,sda--->21 scl--->22
lcd lcd(21, 22);

void setup() {
lcd.Init(); //initialize
lcd.Clear(); //cls

}

void loop() {
lcd.Cursor(0, 7); //Set display position
lcd.Display("KEYES"); //Setting the display
lcd.Cursor(1, 0);
lcd.Display("ABCDEFGHIJKLMNOPQR");
lcd.Cursor(2, 0);
lcd.Display("123456789+-*/<>=$@");
lcd.Cursor(3, 0);
lcd.Display("%^&(){}:;'|?,.~\\[]");

}
//**

Code Explanation
First import the library file 1.Init() initializes the display screen; .Clear() clears the display; .Cursor() sets the display
position; .Display() displays characters.

6.2. 2. Basic Projects 477

keyestudio WiKi

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. The first line of the 128X32LCD module display shows
“KEYES”, the second line shows “ABCDEFGHIJKLMNOPQR”, and the third line shows “123456789±*/<> =$@”,
the fourth line displays “%^&(){}:;’|?,.~\[]”, as shown in the following figure:

6.2.44 Project 44: RFID Module

Description
RFIDRFID-RC522 radio frequency module adopts a Philips MFRC522 original chip to design card reading circuit,
easy to use and low cost, suitable for equipment development and card reader development and so on.

RFID or Radio Frequency Identification system consists of two main components, a transponder/tag attached to an
object to be identified, and a transceiver also known as interrogator/Reader.

In the experiment, the data read by the card swipe module is 4 hexadecimal numbers, and we print these four hexadeci-
mal numbers as strings. For example, we read the data of the IC card below: 0xED0xF70x940x5A and the information
string displayed in the serial monitor is ED F7 94 5A ; the data read from the keychain is: 0x4C0x090x6B0x6E .
Different IC cards and different key chains have diverse data.

Working Principle
Radio frequency identification, the card reader is composed of a radio frequency module and a high-level magnetic field.
The Tag transponder is a sensing device, and this device does not contain a battery. It only contains tiny integrated
circuit chips and media for storing data and antennas for receiving and transmitting signals. To read the data in the tag,
first put it into the reading range of the card reader. The reader will generate a magnetic field, and because the magnetic
energy generates electricity according to Lenz’s law, the RFID tag will supply power, thereby activating the device.

478 Chapter 6. Arduino tutorial

keyestudio WiKi

Components Required

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIY RFID Module*1 4P Dupont Wire*1

Micro USB Cable*1 Key*1 IC Card*1

Connection Diagram

6.2. 2. Basic Projects 479

keyestudio WiKi

Test Code

//**
/*
* Filename : RFID
* Description : RFID reader UID
* Auther : http//www.keyestudio.com
*/
#include <Wire.h>
#include "MFRC522_I2C.h"
// IIC pins default to GPIO21 and GPIO22 of ESP32
// 0x28 is the i2c address of SDA, if doesn't matchplease check your address with i2c.
MFRC522 mfrc522(0x28); // create MFRC522.

void setup() {
Serial.begin(115200); // initialize and PC's serial communication
Wire.begin(); // initialize I2C
mfrc522.PCD_Init(); // initialize MFRC522
ShowReaderDetails(); // dispaly PCD - MFRC522 read carder
Serial.println(F("Scan PICC to see UID, type, and data blocks..."));

}

void loop() {
//
if (! mfrc522.PICC_IsNewCardPresent() || ! mfrc522.PICC_ReadCardSerial()) {
delay(50);
return;

}

// select one of door cards. UID and SAK are mfrc522.uid.

// save UID
Serial.print(F("Card UID:"));
for (byte i = 0; i < mfrc522.uid.size; i++) {
Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ");
Serial.print(mfrc522.uid.uidByte[i], HEX);

}
Serial.println();

}

void ShowReaderDetails() {
// attain the MFRC522 software
byte v = mfrc522.PCD_ReadRegister(mfrc522.VersionReg);
Serial.print(F("MFRC522 Software Version: 0x"));
Serial.print(v, HEX);
if (v == 0x91)
Serial.print(F(" = v1.0"));

else if (v == 0x92)
Serial.print(F(" = v2.0"));

else
Serial.print(F(" (unknown)"));

Serial.println("");
// when returning to 0x00 or 0xFF, may fail to transmit communication signals

(continues on next page)

480 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

if ((v == 0x00) || (v == 0xFF)) {
Serial.println(F("WARNING: Communication failure, is the MFRC522 properly connected?

→˓"));
}

}
//**

Code Explanation
Wire.begin(); The module we use is the IIC interface, so we first initialize the IIC

mfrc522.PCD_Init(); initialize MFRC522

String(mfrc522.uid.uidByte[i], HEX); A string to convert the value read into hexadecimal format.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set baud rate to 115200.
When we make the IC card close to the RFID module, the information will be printed out, as shown in the figure below.

Note: Different RFID-RC522 door cards and key chains have diverse values.

6.3 3. Comprehensive Experiments:

The previous projects are related to single sensor or module. In the following part, we will combine various sensors
and modules to create some comprehensive experiments to perform special functions.

6.3. 3. Comprehensive Experiments: 481

keyestudio WiKi

6.3.1 Project 45: Button-controlled LED

Overview
In this lesson, we will make an extension experiment with a button and an LED. When the button is pressed and low
levels are output, the LED will light up; when the button is released, the LED will go off. Then we can control a module
with another module.

Components

482 Chapter 6. Arduino tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Purple LED Module*1

Keyestudio DIY Button Module*1 3P Dupont Wire*2 Micro USB Cable*1

Connection Diagram

Test Code

//**
/*
* Filename : button_control_LED
* Description : Make a table lamp.
* Auther : http//www.keyestudio.com
*/
#define PIN_LED 4
#define PIN_BUTTON 15
bool ledState = false;

void setup() {
// initialize digital pin PIN_LED as an output.
pinMode(PIN_LED, OUTPUT);
pinMode(PIN_BUTTON, INPUT);

}

// the loop function runs over and over again forever
void loop() {
if (digitalRead(PIN_BUTTON) == LOW) {
delay(20);
if (digitalRead(PIN_BUTTON) == LOW) {
reverseGPIO(PIN_LED);

}
while (digitalRead(PIN_BUTTON) == LOW);

}
}

(continues on next page)

6.3. 3. Comprehensive Experiments: 483

keyestudio WiKi

(continued from previous page)

void reverseGPIO(int pin) {
ledState = !ledState;
digitalWrite(pin, ledState);

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. When the button is pressed, the LED will light up; when
pressed again, the LED will go off.

6.3.2 Project 46: Alarm Experiment

Overview
In the previous experiment, we control an output module though an input module. In this lesson, we will make an
experiment that the active buzzer will emit sounds once an obstacle appears.

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Obstacle Avoidance Sensor*1

Keyestudio Active Buzzer*1 3P Dupont Wire*2 Micro USB Cable*1

Connection Diagram

484 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : Avoiding alarm
* Description : Obstacle avoidance sensor controls the buzzer
* Auther : http//www.keyestudio.com
*/
int item = 0;
void setup() {
pinMode(15, INPUT); //Obstacle avoidance sensor is connected to GPIO15 and set to␣

→˓input mode
pinMode(4, OUTPUT); //The buzzer is connected to GPIO4 and set to output mode

}

void loop() {
item = digitalRead(15);//Read the level value output by the obstacle avoidance sensor
if (item == 0) {//Obstruction detected
digitalWrite(4, HIGH);//The buzzer sounded

} else {//No obstacles detected
digitalWrite(4, LOW);//The buzzer is off

}
delay(100);//Delay 100ms

}
//**

Code Explanation
Set IO ports according to connection diagram then configure pins mode.

The value is 0 when pressing the button, So, we can determine the key value(0through if (item == 0) and make the
buzzer beep digitalWrite(4, HIGH).

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. If the obstacle is detected, the active buzzer will chime;
if not, it won’t beep.

6.3. 3. Comprehensive Experiments: 485

keyestudio WiKi

6.3.3 Project 47: Intrusion Detection

Description
In this experiment, we use a PIR motion sensor to control an active buzzer to emit sounds and the onboard LED to flash
rapidly.

Required Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY PIR Motion
Sensor*1

Keyestudio DIY Active
Buzzer*1

Keyestudio Purple LED
Module*1

3P Dupont Wire*3 Micro USB Cable*1

Connection Diagram

486 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : PIR alarm
* Description : PIR control buzzer
* Auther : http//www.keyestudio.com
*/
int item = 0;
void setup() {
pinMode(15, INPUT); //PIR motion sensor is connected to GPIO15 and set as the input␣

→˓mode
pinMode(4, OUTPUT);//The active buzzer is connected to GPIO4 and set to output mode
pinMode(22, OUTPUT);//LED is connected to GPIO22 and set to output mode

}

void loop() {
item = digitalRead(15);//Read digital level signal output by infrared pyrorelease␣

→˓sensor
if (item == 1) { //Movement detected

digitalWrite(4, HIGH); //Turn on the buzzer
digitalWrite(22, HIGH); //Turn on the LED
delay(200);//Delay 200ms
digitalWrite(4, LOW); //Turn off the buzzer
digitalWrite(22, LOW); //Turn off the LED
delay(200);//Delay 200ms

} else { //No detection
digitalWrite(4, LOW); //Turn off the buzzer
digitalWrite(22, LOW); //Turn off the LED

}
}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. If the sensor detects people moving, the buzzer will emit
an alarm, and the LED will flash continuously.

6.3. 3. Comprehensive Experiments: 487

keyestudio WiKi

6.3.4 Project 48: Extinguishing Robot

Description
Today we will use Arduino simulation to build an extinguishing robot that will automatically sense the fire and start the
fan. In this project we will learn how to build a very simple robot using ESP32, (detecting flames with a flame sensor,
blowing out candles with a fan) can teach us basic concepts about robotics. Once you understand the basics below, you
can build more complex robots.

Components Required

ESP32 Board*1 ESP32 Expansion Board*1 130 Motor*1

3P Dupont Wire*1 4P Dupont Wire*1 Micro USB Cable*1

Battery(provide for yourself)*6 Flame Sensor*1 Battery Holder*1

Connection Diagram

488 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : Fire-fighting robot
* Description : Flame sensor controls the 130 fan module
* Auther : http//www.keyestudio.com
*/
int item = 0;
void setup() {
Serial.begin(9600);
pinMode(15, OUTPUT);//INA corresponds to IN+, and sets GPIO15 to output mode
pinMode(4, OUTPUT);//INB corresponds to IN-, and sets GPIO4 to output mode

}

void loop() {
item = analogRead(34);//The flame sensor is connected to GPIO34, and read the␣

→˓simulated value to Item
Serial.println(item);//Serial port display analog value
if (item < 3000) {//Less than 3000

digitalWrite(15, LOW);//Turn on the fan
digitalWrite(4, HIGH);

} else {//Otherwise, turn off the fan.
digitalWrite(15, LOW);
digitalWrite(4, LOW);

}
delay(100);

}
//**

Code Explanation
In the code, we set the threshold value to 3000. When the ADC value detected by the flame sensor is lower than the
threshold value, the fan will be automatically turned on; otherwise, it will be turned off. For the driving method of the
fan, please refer to the 130 Motor.

Test Result
Connect the wires according to the experimental wiring diagram, switch the DIP switch on the ESP32 expansion board
to the ON end and power up, compile and upload the code to the ESP32. After uploading successfully, open the serial
monitor and set baud rate to 9600, then the ADC value of the flame will be printed. When this value is less than 3000,
the fan will work to blow out the fire, otherwise, it will be turned off. Basically, the ADC value can be set by yourself.

6.3. 3. Comprehensive Experiments: 489

keyestudio WiKi

490 Chapter 6. Arduino tutorial

keyestudio WiKi

6.3.5 Project 49: Rotary Encoder control RGB

Introduction
In this lesson, we will control the LED on the RGB module to show different colors through a rotary encoder.

When designing the code, we need to divide the obtained values by 3 to get the remainders. The remainder is 0 and the
LED will become red. The remainder is 1, the LED will become green. The remainder is 2, the LED will turn blue.

Components

6.3. 3. Comprehensive Experiments: 491

keyestudio WiKi

ESP32Board*1 ESP32 Expansion
Board*1

KeyestudioCommon Cathode RGB
Module*1

KeyestudioRotary Encoder
Module*1

5P Dupont Wire*1 4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

//**
/*
* Filename : Encoder control RGB
* Description : Rotary encoder controls RGB to present different effects
* Auther : http//www.keyestudio.com
*/
//Interfacing Rotary Encoder with Arduino
//Encoder Switch -> pin 27
//Encoder DT -> pin 14
//Encoder CLK -> pin 12
int Encoder_DT = 14;
int Encoder_CLK = 12;
int Encoder_Switch = 27;

int Previous_Output;
int Encoder_Count;

int ledPins[] = {0, 2, 15}; //define red, green, blue led pins
const byte chns[] = {0, 1, 2}; //define the pwm channels
int red, green, blue;

int val;
(continues on next page)

492 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

void setup() {
Serial.begin(9600);

//pin Mode declaration
pinMode (Encoder_DT, INPUT);
pinMode (Encoder_CLK, INPUT);
pinMode (Encoder_Switch, INPUT);

Previous_Output = digitalRead(Encoder_DT); //Read the inital value of Output A
for (int i = 0; i < 3; i++) { //setup the pwm channels,1KHz,8bit

ledcSetup(chns[i], 1000, 8);
ledcAttachPin(ledPins[i], chns[i]);

}
}

void loop() {
//aVal = digitalRead(pinA);

if (digitalRead(Encoder_DT) != Previous_Output)
{
if (digitalRead(Encoder_CLK) != Previous_Output)
{
Encoder_Count ++;
Serial.print(Encoder_Count);
Serial.print(" ");
val = Encoder_Count % 3;
Serial.println(val);

}
else
{
Encoder_Count--;
Serial.print(Encoder_Count);
Serial.print(" ");
val = Encoder_Count % 3;
Serial.println(val);

}
}

Previous_Output = digitalRead(Encoder_DT);

if (digitalRead(Encoder_Switch) == 0)
{
delay(5);
if (digitalRead(Encoder_Switch) == 0) {
Serial.println("Switch pressed");
while (digitalRead(Encoder_Switch) == 0);

}
}
if (val == 0) {
//RED(255, 0, 0)
ledcWrite(chns[0], 255);
ledcWrite(chns[1], 0);

(continues on next page)

6.3. 3. Comprehensive Experiments: 493

keyestudio WiKi

(continued from previous page)

ledcWrite(chns[2], 0);
} else if (val == 1) {
//GREEN(0, 255, 0)
ledcWrite(chns[0], 0);
ledcWrite(chns[1], 255);
ledcWrite(chns[2], 0);

} else {
//BLUE(0, 0, 255)
ledcWrite(chns[0], 0);
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 255);

}
}
//**

Code Explanation
1). In the experiment, we set the val to the remainder of Encoder_Count divided by 3. Encoder_Count is the value of
the encoder. Then we can set pin GPIO0 (red), GPIO2 (green) and GPIO15 (blue) according to remainders.

2). Referring to the control method learned in the previous experiment, use the LED on the remainder control module
to display the corresponding light color. The value obtained by taking the remainder of 3 for any number is 0 or 1 or 2.
We use these three values to judge, and display the corresponding color.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set the baud rate to 9600,
then rotate the knob of the rotary encoder to display the reminders, which can control colors of LED(red green blue).

494 Chapter 6. Arduino tutorial

keyestudio WiKi

6.3.6 Project 50: Rotary Potentiometer

Introduction
In the previous courses, we did experiments of breathing light and controlling LED with button. In this course, we do
these two experiments by controlling the brightness of LED through an adjustable potentiometer. The brightness of
LED is controlled by PWM values, and the range of analog values is 0 to 4095 and the PWM value range is 0-255.

After the code is set successfully, we can control the brightness of the LED on the module by rotating the potentiometer.

Required Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Purple LED*1

Keyestudio Rotary Potentiometer*1 3P Dupont Wire*2 Micro USB Cable*1

Connection Diagram

Test Code

//**
/*
* Filename : adjust the light
* Description : Controlling the brightness of LED by potentiometer.
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 34 //the pin of the potentiometer
#define PIN_LED 15 // the pin of the LED

(continues on next page)

6.3. 3. Comprehensive Experiments: 495

keyestudio WiKi

(continued from previous page)

#define CHAN 0
void setup() {
ledcSetup(CHAN, 1000, 12);
ledcAttachPin(PIN_LED, CHAN);

}

void loop() {
int adcVal = analogRead(PIN_ANALOG_IN); //read adc
int pwmVal = adcVal; // adcVal re-map to pwmVal
ledcWrite(CHAN, pwmVal); // set the pulse width.
delay(10);

}
//**

Code Explanation
In the experiment, the mapping function maps adcVal from the range of 0-4095 to 0-255, and assigns it to pwmVal.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Rotating the potentiometer on the module can adjust the
brightness of the LED on the LED module.

6.3.7 Project 51: Smart Windows

Description
In life, we can see all kinds of smart products, such as smart home. Smart homes include smart curtains, smart windows,
smart TVs, smart lights, and more. In this experiment, we use a steam sensor to detect rainwater, and then achieve the
effect of closing and opening the window by a servo.

Required Components

496 Chapter 6. Arduino tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Steam Sensor*1

Servo*1 3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

//**
/*
* Filename : smart window
* Description : Water drop sensor controls steering gear rotation.
* Auther : http//www.keyestudio.com
*/
#include <ESP32Servo.h>//Import the steering gear library file
int adcVal = 0;//A variable that holds the ADC value output by the droplet sensor
int servoPin = 15; // Define the servo pin
Servo myservo;//Defines an instance of the steering gear class

#define PIN_ADC 34 //the pin of the Water drop sensor

void setup(){
Serial.begin(9600);
pinMode(PIN_ADC, INPUT);
myservo.setPeriodHertz(50); // standard 50 hz servo
myservo.attach(servoPin, 500, 2500); // attaches the servo on servoPin to the servo␣

→˓object
}

void loop(){
(continues on next page)

6.3. 3. Comprehensive Experiments: 497

keyestudio WiKi

(continued from previous page)

adcVal = analogRead(PIN_ADC);//The droplet sensor is connected to the analog port GP34
Serial.println(adcVal);
if (adcVal > 2000) {//The simulated value is greater than 2000
myservo.write(0);//close the window
delay(500);//Give the steering gear time to turn

} else {// no rain
myservo.write(180);//open the window
delay(500);//Delay 500ms

}
}
//**

Code Explanation
We can control a servo to rotate by a threshold.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. When the sensor detects a certain amount of water, the
servo rotates to achieve the effect of closing or opening windows.

498 Chapter 6. Arduino tutorial

keyestudio WiKi

6.3.8 Project 52: Sound Activated Light

Introduction
In this lesson, we will make a smart sound activated light using a sound sensor and an LED module. When we make a
sound, the light will automatically turn on; when there is no sound, the light will automatically turn off. How it works?
Because the sound-controlled light is equipped with a sound sensor, and this sensor converts the intensity of external
sound into a corresponding value. Then set a threshold, when the threshold is exceeded, the light will go on, and when
it is not exceeded, the light will go off.

Components

6.3. 3. Comprehensive Experiments: 499

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Sound Sensor*1

Keyestudio Purple LED Module*1 3P Dupont Wire*2 MicroUSBCable*1

Connection Diagram

Test Code

//**
/*
* Filename : sound-controlled lights
* Description : Sound sensor controls LED on and off
* Auther : http//www.keyestudio.com
*/
int ledPin = 15;//LED is connected to GP15
int microPin = 34;//Sound sensor is connected to GPIO34
void setup() {
Serial.begin(9600);//Set baud rate to 9600
pinMode(ledPin, OUTPUT);//LED is the output mode

}

void loop() {
int val = analogRead(microPin);//Read analog value
Serial.print(val);// Serial port print
if(val > 600){//exceed the threshold value
digitalWrite(ledPin, HIGH);//Lighting LED 3sand print the corresponding information
Serial.println(" led on");
delay(3000);

}else{//otherwise
digitalWrite(ledPin, LOW);//Turn off the LED and print the corresponding information
Serial.println(" led off");

}
delay(100);

}
//**

500 Chapter 6. Arduino tutorial

keyestudio WiKi

Code Explanation
We set the ADC threshold value to 600. If more than 600, LED will be on 3s; on the contrary, it will be off.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set the baud rate to 9600,
then the corresponding volume ADC value will be displayed.

When the analog value of sound is greater than 600, the LED on the LED module will light up 3s, otherwise it will go
off.

6.3.9 Project 53: Fire Alarm

Description
In this experiment, we will make a fire alarm system. Just use a flame sensor to control an active buzzer to emit sounds.

Required Components

6.3. 3. Comprehensive Experiments: 501

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIYActive Buzzer*1

Micro USB Cable*1 3P Dupont Wire*2 keyestudio DIY Flame Sensor*1

Connection Diagram

Test Code

//**
/*
* Filename : Flame Alarm
* Description : Controlling the buzzer by flame sensor.
* Auther : http//www.keyestudio.com
*/
int item = 0;
void setup() {
Serial.begin(9600);
pinMode(4, INPUT);//Flame sensor digital pin is connected to GPIO4
pinMode(15, OUTPUT);//Buzzer pin is connected to GPIO15

}

void loop() {
item = digitalRead(4);//Read the digital level output by the flame sensor
Serial.println(item);//Newline print level signal
if (item == 0) {//Flame detected

digitalWrite(15, HIGH);//Turn on the buzzer
} else {//Otherwise, turn off the buzzer
digitalWrite(15, LOW);

}
delay(100);//Delay 100ms

}
//**

Code Explanation

502 Chapter 6. Arduino tutorial

keyestudio WiKi

This flame sensor uses an analog pin and a digital pin. When a flame is detected, the digital pin outputs a low level. In
this experiment we will use the digital port.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. When the sensor detects the flame, the external active
buzzer will emit sounds, otherwise the active buzzer will not emit sounds.

6.3.10 Project 54: Smoke Alarm

Description
In this experiment, we will make a smoke alarm by a TM16504-Digit segment module, a gas sensor and an active

6.3. 3. Comprehensive Experiments: 503

keyestudio WiKi

buzzer.

Required Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio Active
Buzzer*1

Keyestudio TM16504-Digit Segment
Module*1

keyestudio Analog Gas
Senso*1

3P Dupont Wire*2 4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

//**
/*
* Filename : smoke alarm
* Description : MQ2 controls a buzzer and a four-digit analog smoke tester
* Auther : http//www.keyestudio.com
*/
#include "TM1650.h" //Import the TM1650 library file
int adcVal = 0; //display ADC value
//the interfaces are GPIO21 and GPIO22
#define DIO 21
#define CLK 22
TM1650 DigitalTube(CLK,DIO);

void setup() {
DigitalTube.setBrightness(); //set brightness, 0---7, default : 2
DigitalTube.displayOnOFF(); //display on or off, 0=display off, 1=display on,␣

→˓default : 1
for(char b=1;b<5;b++){

DigitalTube.clearBit(b); //DigitalTube.clearBit(0 to 3); Clear bit display.
}
// DigitalTube.displayDot(1,true); //Bit0 display dot. Use before displayBit().

(continues on next page)

504 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

DigitalTube.displayBit(1,0); //DigitalTube.Display(bit,number); bit=0---3 number=0-
→˓--9
pinMode(15, OUTPUT);//the buzzer is connected to GPIO15

}

void loop() {
adcVal = analogRead(34);//Read the ADC values of MQ2
displayFloatNum(adcVal);;//Four digit tube display adcVal values
if (adcVal > 1000) {//ADC value is greater than 1000
digitalWrite(15, HIGH); // buzzer alarming

} else {//or else
digitalWrite(15, LOW); //Turn off the buzzer

}
delay(100);//delay 100ms

}

void displayFloatNum(float adcVal){
if(adcVal > 9999)
return;

int dat = adcVal*10;
//DigitalTube.displayDot(2,true); //Bit0 display dot. Use before displayBit().
if(dat/10000 != 0){
DigitalTube.displayBit(1, dat%100000/10000);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%10000/1000 != 0){
DigitalTube.clearBit(1);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%1000/100 != 0){
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.clearBit(3);
DigitalTube.displayBit(4, dat%100/10);

}
//**

Code Explanation
Define an integer variable val to store the analog value of the smoke sensor, and then we display the analog value in
the four-digit digital tube, and then set a threshold, and when the threshold is reached, the buzzer will sound.

6.3. 3. Comprehensive Experiments: 505

keyestudio WiKi

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. When the concentration of combustible gas exceeds the
standard, the active buzzer module will give an alarm, and the four-digit digital tube will display the concentration
value.

6.3.11 Project 55: Alcohol Sensor

Description
In the last experiment, we made a smoke alarm. In this experiment, we combine the active buzzer, the MQ-3 alcohol
sensor, and a four-digit digital tube to test the alcohol concentration through the alcohol sensor. Then, the concentration
to control the active buzzer alarm and the four-digit digital tube to display the concentration. So as to achieve the
simulation effect of alcohol detector.

Components Required

ESP32 Board*1 ESP32 Expansion
Board*1

Active
Buzzer*1

Keyestudio DIY TM1650 4-Digit Tube
Display*1

keyestudio Alcohol Sen-
sor*1

3P Dupont Wire*2 4P Dupont
Wire*1

Micro USB Cable*1

Connection Diagram

506 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : breathalyzer
* Description : MQ3 controls a buzzer and a four-digit tube to simulate a breathalyzer.
* Auther : http//www.keyestudio.com
*/
#include "TM1650.h" //Import the TM1650 library file
int adcVal = 0; //display ADC value
//the interfaces are GPIO21 and GPIO22
#define DIO 21
#define CLK 22
TM1650 DigitalTube(CLK,DIO);

void setup() {
DigitalTube.setBrightness(); //set brightness, 0---7, default : 2
DigitalTube.displayOnOFF(); //display on or off, 0=display off, 1=display on,␣

→˓default : 1
for(char b=1;b<5;b++){

DigitalTube.clearBit(b); //DigitalTube.clearBit(0 to 3); Clear bit display.
}
// DigitalTube.displayDot(1,true); //Bit0 display dot. Use before displayBit().
DigitalTube.displayBit(1,0); //DigitalTube.Display(bit,number); bit=0---3 number=0-

→˓--9
pinMode(15, OUTPUT);//the buzzer is connected to GPIO15

}

void loop() {
adcVal = analogRead(34);//Read the ADC values of MQ3
displayFloatNum(adcVal);//Four digit tube display adcVal values
if (adcVal > 1000) {//ADC value is greater than 1000

digitalWrite(15, HIGH); // buzzer alarming
} else {//or else
digitalWrite(15, LOW); //Turn off the buzzer

}
delay(100);//delay 100ms

}

void displayFloatNum(float adcVal){
if(adcVal > 9999)
return;

int dat = adcVal*10;
(continues on next page)

6.3. 3. Comprehensive Experiments: 507

keyestudio WiKi

(continued from previous page)

//DigitalTube.displayDot(2,true); //Bit0 display dot. Use before displayBit().
if(dat/10000 != 0){
DigitalTube.displayBit(1, dat%100000/10000);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%10000/1000 != 0){
DigitalTube.clearBit(1);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%1000/100 != 0){
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.clearBit(3);
DigitalTube.displayBit(4, dat%100/10);

}
//**

Code Explanation
Define an integer variable val to store the ADC value of the alcohol sensor, then we display the analog value in the
four-digit display module and set a threshold.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. When different alcohol concentrations are detected, the
active buzzer module will alarm, and the four-digit digital display will show the concentration value.

508 Chapter 6. Arduino tutorial

keyestudio WiKi

6.3.12 Project 56: Ultrasonic Radar

Description
We know that bats use echoes to determine the direction and the location of their preys. In real life, sonar is used to
detect sounds in the water. Since the attenuation rate of electromagnetic waves in water is very high, it cannot be used
to detect signals, however, the attenuation rate of sound waves in the water is much smaller, so sound waves are most
commonly used underwater for observation and measurement.

In this experiment, we will use a speaker module, an RGB module and a 4-digit tube display to make a device for
detection through ultrasonic.

Required Components

6.3. 3. Comprehensive Experiments: 509

keyestudio WiKi

ESP32 Board*1 ESP32 Ex-
pansion
Board*1

Keyestudio HC-
SR04 Ultrasonic
Sensor*1

Keyestudio 8002b
Power Ampli-
fier*1

Keyestudio DIY Com-
mon Cathode RGB
Module *1

Keyestudio DIY
TM1650 4-Digit Tube
Display*1

4P Dupont
Wire*3

3P Dupont Wire*1 Micro USB Ca-
ble*1

Connection Diagram

Test Code

//**
/*
* Filename : Ultrasonic radar
* Description : Ultrasonic control four digit tube, buzzer and RGB analog ultrasonic␣
→˓radar.
* Auther : http//www.keyestudio.com
*/
#include "TM1650.h" //Import the TM1650 library file
//the interfaces are GPIO21 and GPIO22
#define DIO 21
#define CLK 22
TM1650 DigitalTube(CLK,DIO);

int beeppin = 18; //Define the horn pin as GPIO18

int TrigPin = 13; //Set the Trig pin to GPIO13
int EchoPin = 14; //Set the Echo pin to GPIO14
int distance;//Distance measured by ultrasound

int ledPins[] = {0, 2, 15}; //define red, green, blue led pins
const byte chns[] = {0, 1, 2}; //define the pwm channels

(continues on next page)

510 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

float checkdistance() { //get distance
// A short low level is given beforehand to ensure a clean high pulse:
digitalWrite(TrigPin, LOW);
delayMicroseconds(2);
// The sensor is triggered by a high pulse of 10 microseconds or more
digitalWrite(TrigPin, HIGH);
delayMicroseconds(10);
digitalWrite(TrigPin, LOW);
// Read the signal from the sensor: a high level pulse
//Its duration is the time (in microseconds) from sending the ping command to␣

→˓receiving the echo from the object
float distance = pulseIn(EchoPin, HIGH) / 58.00; //Convert to distance
delay(10);
return distance;

}

void setup() {
DigitalTube.setBrightness(); //set brightness, 0---7, default : 2
DigitalTube.displayOnOFF(); //display on or off, 0=display off, 1=display on,␣

→˓default : 1
for(char b=1;b<5;b++){

DigitalTube.clearBit(b); //DigitalTube.clearBit(0 to 3); Clear bit display.
}
// DigitalTube.displayDot(1,true); //Bit0 display dot. Use before displayBit().
DigitalTube.displayBit(1,0); //DigitalTube.Display(bit,number); bit=0---3 number=0-

→˓--9
pinMode(TrigPin, OUTPUT);//Sets the Trig pin as output
pinMode(EchoPin, INPUT); //Set the Echo pin as input
ledcSetup(3, 1000, 8);//setup the pwm channels,1KHz,8bit
ledcAttachPin(18, 3);
for (int i = 0; i < 3; i++) { //setup the pwm channels,1KHz,8bit

ledcSetup(chns[i], 1000, 8);
ledcAttachPin(ledPins[i], chns[i]);

}
}

void loop() {
distance = checkdistance(); //Ultrasonic ranging
displayFloatNum(distance); //Nixie tube shows distance
if (distance <= 10) {
ledcWrite(3, 100);
delay(100);
ledcWrite(3, 0);
ledcWrite(chns[0], 255); //Common cathode LED, high level to turn on the led.
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 0);

} else if (distance > 10 && distance <= 20) {
ledcWrite(3, 200);
delay(200);
ledcWrite(3, 150);
ledcWrite(chns[0], 0);

(continues on next page)

6.3. 3. Comprehensive Experiments: 511

keyestudio WiKi

(continued from previous page)

ledcWrite(chns[1], 255);
ledcWrite(chns[2], 0);

} else {
ledcWrite(3, 0);
ledcWrite(chns[0], 0);
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 255);

}
}

void displayFloatNum(float distance){
if(distance > 9999)
return;

int dat = distance*10;
//DigitalTube.displayDot(2,true); //Bit0 display dot. Use before displayBit().
if(dat/10000 != 0){
DigitalTube.displayBit(1, dat%100000/10000);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%10000/1000 != 0){
DigitalTube.clearBit(1);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%1000/100 != 0){
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.clearBit(3);
DigitalTube.displayBit(4, dat%100/10);

}
//**

Code Explanation
We set sound frequency and light color by adjusting different distance range.

We can adjust the distance range in the code.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After up-
loading successfullywe will use a USB cable to power on. When the ultrasonic sensor detects different distances(within
20 cm), the buzzer will produce different frequencies of sound, the RGB will show different colors, and the measured
distances are displayed on the 4-digit tube display.

512 Chapter 6. Arduino tutorial

keyestudio WiKi

6.3.13 Project 57: IR Remote Control

Introduction
In the previous experiments, we learned how to turn on/off the LED and adjust its brightness via PWM and print the but-
ton value of the IR remote control in the serial monitor window. Herein, we use an infrared remote control to turn
on/off an LED.

Components

6.3. 3. Comprehensive Experiments: 513

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY Purple LED Mod-
ule*1

Keyestudio DIY IR Re-
ceiver*1

Micro USB Ca-
ble*1

IR Remote Control*1 3P Dupont Wire*2

Connection Diagram

Test Code

//**
/*
* Filename : IR Control LED
* Description : Remote controls LED on and off
* Auther : http//www.keyestudio.com
*/
#include <Arduino.h>
#include <IRremoteESP8266.h>
#include <IRrecv.h>
#include <IRutils.h>

const uint16_t recvPin = 15; // Infrared receiving pin 15
IRrecv irrecv(recvPin); // Create a class object used to receive class
decode_results results; // Create a decoding results class object
int led = 4;//LED connect to GP4

void setup() {
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
pinMode(led, OUTPUT);

}
////////////////////

(continues on next page)

514 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

void loop() {
if(irrecv.decode(&results)) { // Waiting for decoding
serialPrintUint64(results.value, HEX);// Print out the decoded results
Serial.print("");
handleControl(results.value); // Handle the commands from remote control
irrecv.resume(); // Receive the next value

}
}
void handleControl(unsigned long value) {
if (value == 0xFF6897) // Receive the number '1'
{
digitalWrite(led, HIGH);//turn on LED
Serial.println(" led on");

}
else if (value == 0xFF9867) // Receive the number '2'
{

digitalWrite(led, LOW);//turn off LED
Serial.println(" led off");

}
}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set the baud rate to 9600.
Press the button 1 of the remote, which will be displayed on the monitor, and the LED will be on. Similarly, press the
button 2 , the LED will be off.

6.3. 3. Comprehensive Experiments: 515

keyestudio WiKi

516 Chapter 6. Arduino tutorial

keyestudio WiKi

6.3.14 Project 58: Heat Dissipation Device

6.3. 3. Comprehensive Experiments: 517

keyestudio WiKi

Description
We will use a temperature sensor and some modules to make a smart cooling device in this experiment. When the
ambient temperature is higher than a certain value, the motor is turned on, thereby reducing the ambient temperature
and achieving the heat dissipation effect. Then display the temperature value in the four-digit segment display.

Required Components

ESP32 Board*1 ESP32 Expansion
Board*1

keyestudio 130
Motor*1

Keyestudio TM1650 4-Digit Seg-
ment Display*1

Keyestudio 18B20 Tempera-
ture Sensor*1

3P Dupont Wire*1 4P Dupont
Wire*2

Micro USB Cable*1

Battery Holder*1 Battery(provided by your-
self)*6

Connection Diagram

Test Code

//**
/*
* Filename : heat abstractor
* Description : DS18B20 controls a four digit tube and a motor that simulates Heat␣

(continues on next page)

518 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

→˓Abstractor
* Auther : http//www.keyestudio.com
*/
#include <DS18B20.h>
#include "TM1650.h" //Import the TM1650 library file
//The two ports are GP21 and GP22
#define DIO 21
#define CLK 22
TM1650 DigitalTube(CLK,DIO);

//ds18b20 pin to 13
DS18B20 ds18b20(13);
void setup() {

Serial.begin(9600);
DigitalTube.setBrightness(); //set brightness, 0---7, default : 2
DigitalTube.displayOnOFF(); //display on or off, 0=display off, 1=display on,␣

→˓default : 1
for(char b=1;b<5;b++){

DigitalTube.clearBit(b); //DigitalTube.clearBit(0 to 3); Clear bit display.
}
// DigitalTube.displayDot(1,true); //Bit0 display dot. Use before displayBit().
DigitalTube.displayBit(1,0); //DigitalTube.Display(bit,number); bit=0---3 number=0-

→˓--9
//Motor is connected to 15 4
pinMode(15, OUTPUT);
pinMode(4, OUTPUT);

}

void loop() {
double temp = ds18b20.GetTemp();//Read the temperature
temp *= 0.0625;//The conversion accuracy is 0.0625/LSB
Serial.println(temp);
displayFloatNum(temp);//4- digit tube display temperature value
if (temp > 25) {//When the temperature exceeds 25 degrees Celsius, turn on the fan

digitalWrite(15, LOW);
digitalWrite(4, HIGH);

} else {//Otherwise, turn off the fan.
digitalWrite(15, LOW);
digitalWrite(4, LOW);

}
delay(100);

}

void displayFloatNum(float temp){
if(temp > 9999)
return;

int dat = temp*10;
//DigitalTube.displayDot(2,true); //Bit0 display dot. Use before displayBit().
if(dat/10000 != 0){
DigitalTube.displayBit(1, dat%100000/10000);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);

(continues on next page)

6.3. 3. Comprehensive Experiments: 519

keyestudio WiKi

(continued from previous page)

DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%10000/1000 != 0){
DigitalTube.clearBit(1);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%1000/100 != 0){
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.clearBit(3);
DigitalTube.displayBit(4, dat%100/10);

}
//**

Code Explanation
The setting of variables and the storage of detection values are the same as what we learned earlier. We also set a
temperature threshold and control the rotation of the motor when the threshold is exceeded, and then we use the digital
tube to display the temperature value.

Test Result
Connect the wires according to the experimental wiring diagram and power on. Switch the DIP switch on the ESP32
expansion board to the ON end, compile and upload the code to the ESP32. After uploading successfully, we can see
the temperature of the current environment (unit is Celsius) on the four-digit segment display, as shown in the figure
below. If this value exceeds the value we set, the fan will rotate to dissipate heat.

520 Chapter 6. Arduino tutorial

keyestudio WiKi

6.3.15 Project 59: Intelligent Entrance Guard System

Description
In this project, we use the RFID522 card swiping module and the servo to set up an intelligent access control system.
The principle is very simple. We use RFID522 swipe card module, an IC card or key card to unlock.

Required Components

ESP32 Board*1 ESP32 Expansion Board*1 Key*1 IC Card*1

Keyestudio RFID Module*1 Servo*1 4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

6.3. 3. Comprehensive Experiments: 521

keyestudio WiKi

Test Code
Note: Different RFID-MFRC522 IC cards and keys have diverse values. You can substitute your own IC cards and keys
values for the corresponding values read by the RFID-MFRC522 module in the program, otherwise the servo can’t be
controlled when uploading the test code to the ESP32.

For example: You can replace the rfid_str of the
in the program code with your own IC cards and keys values read by the RFID-MFRC522 module.

//***
/*
* Filename : Intelligent_access_control
* Description : RFID controlled steering gear simulated door opening
* Auther : http//www.keyestudio.com
*/
#include <Wire.h>
#include "MFRC522_I2C.h"
// IIC pins default to GPIO21 and GPIO22 of ESP32
// 0x28 is the i2c address of SDA, if doesn't matchplease check your address with i2c.
MFRC522 mfrc522(0x28); // create MFRC522.

#include <ESP32Servo.h>
Servo myservo; // create servo object to control a servo
int servoPin = 15; // Servo motor pin

String rfid_str = "";

void setup() {
Serial.begin(9600);
Wire.begin();
mfrc522.PCD_Init();
ShowReaderDetails(); // dispaly PCD - MFRC522 read carder
Serial.println(F("Scan PICC to see UID, type, and data blocks..."));

myservo.setPeriodHertz(50); // standard 50 hz servo
myservo.attach(servoPin, 500, 2500); // attaches the servo on servoPin to the servo␣

(continues on next page)

522 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

→˓object
myservo.write(0);
delay(500);

}

void loop() {
if (! mfrc522.PICC_IsNewCardPresent() || ! mfrc522.PICC_ReadCardSerial()) {
delay(50);
return;

}

// select one of door cards. UID and SAK are mfrc522.uid.

// save UID
rfid_str = ""; //String emptying
Serial.print(F("Card UID:"));
for (byte i = 0; i < mfrc522.uid.size; i++) {
rfid_str = rfid_str + String(mfrc522.uid.uidByte[i], HEX); //Convert to string
//Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ");
//Serial.print(mfrc522.uid.uidByte[i], HEX);

}
Serial.println(rfid_str);

if (rfid_str == "edf7945a" || rfid_str == "4c96b6e") {
myservo.write(180);
delay(500);
Serial.println(" open the door!");
}

}

void ShowReaderDetails() {
// attain the MFRC522 software
byte v = mfrc522.PCD_ReadRegister(mfrc522.VersionReg);
Serial.print(F("MFRC522 Software Version: 0x"));
Serial.print(v, HEX);
if (v == 0x91)
Serial.print(F(" = v1.0"));

else if (v == 0x92)
Serial.print(F(" = v2.0"));

else
Serial.print(F(" (unknown)"));

Serial.println("");
// when returning to 0x00 or 0xFF, may fail to transmit communication signals
if ((v == 0x00) || (v == 0xFF)) {
Serial.println(F("WARNING: Communication failure, is the MFRC522 properly connected?

→˓"));
}

}
//***

Code Explanation
In the previous experiment, our card swipe module has tested the information of IC card and key. Then we use this

6.3. 3. Comprehensive Experiments: 523

keyestudio WiKi

corresponding information to control the door.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set the baud rate to 9600.
When we use the IC card or blue key to swipe the card, the monitor displays the card and the key information and “open
the door”, at the same time, the servo rotates to the corresponding angle to simulate opening the door.

6.3.16 Project 60Bluetooth

This chapter mainly introduces how to use the Bluetooth of ESP32 for simple data transmission with mobile phone.
Experiment 60.1 is conventional Bluetooth, and experiment 60.2 is Bluetooth control LED.

Project 60.1Classic Bluetooth

Components

In this experiment, we need to use a Bluetooth dabbed serial Bluetooth terminal for a study. If you haven’t install it,
please click the installation: https://www.appsapk.com/serial-bluetooth-terminal/ .

Here is its sign:

524 Chapter 6. Arduino tutorial

https://www.appsapk.com/serial-bluetooth-terminal/

keyestudio WiKi

Component Knowledge
Bluetooth is a short-distance communication system that can be divided into two types, namely low power Bluetooth
(BLE) and classic Bluetooth. There are two modes for simple data transfer: master mode and slave mode.

Master Mode:

In this mode, work is done on the master device and can be connected to the slave device. When the device initiates a
connection request in the main mode, information such as the address and pairing password of other Bluetooth devices
are required. Once paired, you can connect directly to them.

Slave Mode:

A Bluetooth module in the slave mode can only accept connection requests from the host, but cannot initiate connection
requests. After being connected to a host device, it can send and receive data through the host device. Bluetooth devices
can interact with each other, when they interact, the Bluetooth device in the main mode searches for nearby devices.
While a connection is established, they can exchange data. For example, when a mobile phone exchanges data with
ESP32, the mobile phone is usually in master mode and the ESP32 is in slave mode.

Wiring Diagram
We can use a USB cable to connect ESP32 mainboard to the USB port on a computer.

Test Code

6.3. 3. Comprehensive Experiments: 525

keyestudio WiKi

//**
/*
* Filename : Classic Bluetooth
* Description : ESP32 communicates with the phone by bluetooth and print phone's data␣
→˓via a serial port
* Auther : http//www.keyestudio.com
*/
#include "BluetoothSerial.h"

BluetoothSerial SerialBT;
String buffer;
void setup() {
Serial.begin(115200);
SerialBT.begin("ESP32test"); //Bluetooth device name
Serial.println("\nThe device started, now you can pair it with bluetooth!");

}

void loop() {
if (Serial.available()) {
SerialBT.write(Serial.read());

}
if (SerialBT.available()) {
Serial.write(SerialBT.read());

}
delay(20);

}
//**

Test Result
Compile and upload the code to the ESP32. After uploading successfullywe will use a USB cable to power on. Open
the serial monitor and set the baud rate to 115200. When you see the serial prints the character, as shown below, it
means that the ESP32’s bluetooth is waiting for connect ion with a phone. (If open the serial monitor and set the baud
rate to 115200, the information is not displayed, please press the RESET button of the ESP32)

526 Chapter 6. Arduino tutorial

keyestudio WiKi

Ensure that your mobile phone Bluetooth is enabled and the Bluetooth application of “Serial Bluetooth Terminal” is
installed.

Click“Search”search for the nearby Bluetooth and select to connect the“ESP32 test”.

6.3. 3. Comprehensive Experiments: 527

keyestudio WiKi

Open the software APP and click the left side of the terminal, select “Devices”.

If you select ESP32test in classic bluetooth mode, a successful connection message will appear as shown below.

528 Chapter 6. Arduino tutorial

keyestudio WiKi

Data can be transferred between your phone and a computer via ESP32 now.

Send “Hello”, When the computer receives it, which will reply with “Hi!”.

6.3. 3. Comprehensive Experiments: 529

keyestudio WiKi

Project 60.2Bluetooth Control LED

Components

Wiring Diagram

530 Chapter 6. Arduino tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : Bluetooth Control LED
* Description : The phone controls esp32's led via bluetooth.

When the phone sends "LED_on," ESP32's LED lights turn on.
When the phone sends "LED_off," ESP32's LED lights turn off.

* Auther : http//www.keyestudio.com
*/
#include "BluetoothSerial.h"
#include "string.h"
#define LED 15
BluetoothSerial SerialBT;
char buffer[20];
static int count = 0;
void setup() {
pinMode(LED, OUTPUT);
SerialBT.begin("ESP32test"); //Bluetooth device name
Serial.begin(115200);
Serial.println("\nThe device started, now you can pair it with bluetooth!");

}

void loop() {
while(SerialBT.available())
{
buffer[count] = SerialBT.read();
count++;

}
if(count>0){
Serial.print(buffer);
if(strncmp(buffer,"led_on",6)==0){
digitalWrite(LED,HIGH);

}
if(strncmp(buffer,"led_off",7)==0){
digitalWrite(LED,LOW);

(continues on next page)

6.3. 3. Comprehensive Experiments: 531

keyestudio WiKi

(continued from previous page)

}
count=0;
memset(buffer,0,20);

}
}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. The APP operation is the same as the project 60.1. To
make the external LED on and off, simply change the sending content to “led_on” and “led_off”. Moving the APP to
send data:

The serial monitor will display as follows:

532 Chapter 6. Arduino tutorial

keyestudio WiKi

LED Circumstance

6.3. 3. Comprehensive Experiments: 533

keyestudio WiKi

Note:
If the sent content is not “led-on ‘or” led-off “, the status of the LED will not change. If the LED is on, it remains
on when irrelevant content is received; Conversely, if the LED is off, it continues to be off when irrelevant content is
received.

6.3.17 Project 61WIFI Station Mode

Description
ESP32 has three different WiFi modes: Station mode, AP mode and AP+Station mode. All WiFi programming projects
must be configured with WiFi running mode before using, otherwise the WiFi cannot be used. In this project, we are
going to learn the WiFi Station mode of the ESP32.

Components

534 Chapter 6. Arduino tutorial

keyestudio WiKi

Wiring Diagram
Plug the ESP32 to the USB port of your PC.

Component Knowledge
Station mode
When setting Station mode, the ESP32 is taken as a WiFi client. It can connect to the router network and communicate
with other devices on the router via a WiFi connection. As shown in the figure below, the PC and the router have been
connected. If the ESP32 wants to communicate with the PC, the PC and the router need to be connected.

6.3. 3. Comprehensive Experiments: 535

keyestudio WiKi

Test Code
Since WiFi names and passwords vary from place to place, thereby users need to enter the correct WiFi names and
passwords in the box shown below before the program code runs.

536 Chapter 6. Arduino tutorial

keyestudio WiKi

//**
/*
* Filename : WiFi Station
* Description : Connect to your router using ESP32
* Auther : http//www.keyestudio.com
*/
#include <WiFi.h> //Include the WiFi Library header file of ESP32.

//Enter correct router name and password.
const char *ssid_Router = "ChinaNet-2.4G-0DF0"; //Enter the router name
const char *password_Router = "ChinaNet@233"; //Enter the router password

void setup(){
Serial.begin(115200);
delay(2000);
Serial.println("Setup start");
WiFi.begin(ssid_Router, password_Router);//Set ESP32 in Station mode and connect it to␣

→˓your router.
(continues on next page)

6.3. 3. Comprehensive Experiments: 537

keyestudio WiKi

(continued from previous page)

Serial.println(String("Connecting to ")+ssid_Router);
//Check whether ESP32 has connected to router successfully every 0.5s.
while (WiFi.status() != WL_CONNECTED){

delay(500);
Serial.print(".");

}
Serial.println("\nConnected, IP address: ");
Serial.println(WiFi.localIP());//Serial monitor prints out the IP address assigned to␣

→˓ESP32.
Serial.println("Setup End");

}

void loop() {
}
//**

Test Result
After entering the correct WiFi names and passwords, compile and upload the code to the ESP32. After uploading
successfullywe will use a USB cable to power on. Open the serial monitor and set the baud rate to 115200. When the
ESP32 successfully connects to ssid_WiFi, the serial monitor prints out the IP address, then monitor will display as
follows: (If open the serial monitor and set the baud rate to 115200, the information is not displayed, please press the
button RESET of the ESP32)

538 Chapter 6. Arduino tutorial

keyestudio WiKi

6.3.18 Project 62WIFI AP Mode

Description
In this project, we are going to learn the WiFi AP mode of the ESP32.

Components

Wiring Diagram
Plug the ESP32 mainboard to the USB port of your PC.

Component Knowledge
AP Mode:
When setting AP mode, a hotspot network will be created, waiting for other WiFi devices to connect. As shown below:

Take the ESP32 as the hotspot, if a phone or PC needs to communicate with the ESP32, it must be connected to the
ESP32’s hotspot. Communication is only possible after a connection is established via the ESP32.

6.3. 3. Comprehensive Experiments: 539

keyestudio WiKi

Test Code
Before running the code, you can make any changes to the ESP32 AP name and password in the box as shown below,
but in a default circumstance, it doesn’t need to modify.

540 Chapter 6. Arduino tutorial

keyestudio WiKi

//**
/*
* Filename : WiFi AP
* Description : Set ESP32 to open an access point
* Auther : http//www.keyestudio.com
*/
#include <WiFi.h> //Include the WiFi Library header file of ESP32.

const char *ssid_AP = "ESP32_Wifi"; //Enter the router name
const char *password_AP = "12345678"; //Enter the router password

IPAddress local_IP(192,168,1,108);//Set the IP address of ESP32 itself
IPAddress gateway(192,168,1,1); //Set the gateway of ESP32 itself
IPAddress subnet(255,255,255,0); //Set the subnet mask for ESP32 itself

void setup(){
Serial.begin(115200);
delay(2000);

(continues on next page)

6.3. 3. Comprehensive Experiments: 541

keyestudio WiKi

(continued from previous page)

Serial.println("Setting soft-AP configuration ... ");
WiFi.disconnect();
WiFi.mode(WIFI_AP);
Serial.println(WiFi.softAPConfig(local_IP, gateway, subnet) ? "Ready" : "Failed!");
Serial.println("Setting soft-AP ... ");
boolean result = WiFi.softAP(ssid_AP, password_AP);
if(result){
Serial.println("Ready");
Serial.println(String("Soft-AP IP address = ") + WiFi.softAPIP().toString());
Serial.println(String("MAC address = ") + WiFi.softAPmacAddress().c_str());

}else{
Serial.println("Failed!");

}
Serial.println("Setup End");

}

void loop() {
}
//**

Test Result
Compile and upload the code to the ESP32. After uploading successfullywe will use a USB cable to power on. Open
the serial monitor and set the baud rate to 115200, then monitor will display as follows: (If open the serial monitor and
set the baud rate to 115200, the information is not displayed, please press the RESET button of the ESP32)

542 Chapter 6. Arduino tutorial

keyestudio WiKi

When observing the printed information of the serial monitor, turn on the WiFi scanning function of the mobile phone,
you can see the ssid_AP on ESP32, which is dubbed “ESP32_Wifi” in this program code. You can connect to it either
by typing the password “12345678” or by modifying the program code to change its AP name and password.

6.3.19 Project 63WIFI AP+Station Mode

Description
In this project, we are going to learn the AP+Station mode of the ESP32.

Components

Wiring Diagram
Plug the ESP32 mainboard to the USB port of your PC

6.3. 3. Comprehensive Experiments: 543

keyestudio WiKi

Component Knowledge
AP+Station mode:
In addition to the AP mode and the Station mode, AP+Station mode can be used at the same time. Turn on the Station
mode of the ESP32, connect it to the router network, and it can communicate with the Internet through the router. Then
turn on the AP mode to create a hotspot network. Other WiFi devices can be connected to the router network or the
hotspot network to communicate with the ESP32.

Test Code
Before running the code, you need to modify the ssid_Routerpassword_Routerssid_AP and password_AP, as shown in
the box below:

//**
/*
* Filename : WiFi AP+Station
* Description : ESP32 connects to the user's router, turning on an access point
* Auther : http//www.keyestudio.com
*/
#include <WiFi.h>

(continues on next page)

544 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

const char *ssid_Router = "ChinaNet-2.4G-0DF0"; //Enter the router name
const char *password_Router = "ChinaNet@233"; //Enter the router password
const char *ssid_AP = "ESP32_Wifi"; //Enter the router name
const char *password_AP = "12345678"; //Enter the router password

void setup(){
Serial.begin(115200);
Serial.println("Setting soft-AP configuration ... ");
WiFi.disconnect();
WiFi.mode(WIFI_AP);
Serial.println("Setting soft-AP ... ");
boolean result = WiFi.softAP(ssid_AP, password_AP);
if(result){
Serial.println("Ready");
Serial.println(String("Soft-AP IP address = ") + WiFi.softAPIP().toString());
Serial.println(String("MAC address = ") + WiFi.softAPmacAddress().c_str());

}else{
Serial.println("Failed!");

}

Serial.println("\nSetting Station configuration ... ");
WiFi.begin(ssid_Router, password_Router);
Serial.println(String("Connecting to ")+ ssid_Router);
while (WiFi.status() != WL_CONNECTED){
delay(500);
Serial.print(".");

}
Serial.println("\nConnected, IP address: ");
Serial.println(WiFi.localIP());
Serial.println("Setup End");

}

void loop() {
}
//**

Test Result
Ensure that the code in the program has been modified correctly, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set the baud rate to 115200,
then monitor will display as follows: (If open the serial monitor and set the baud rate to 115200, the information is not
displayed, please press the RESET button of the ESP32)

6.3. 3. Comprehensive Experiments: 545

keyestudio WiKi

Open the WiFi scanning function of the mobile phone, you can see the ssid_AP.

546 Chapter 6. Arduino tutorial

keyestudio WiKi

6.3.20 Project 64: Comprehensive Experiment

Introduction
We did a lot of experiments, and for each one we needed to re-upload the code, so can we achieve different functions
through an experiment? In this experiment, we will use an external button module to achieve different functions.

Components Required

ESP32
Board*1

ESP32 Ex-
pansion
Board*1

Keyestudio
DIY Purple
LED Module*1

Keyestudio Button
Module*1

Keyestudio Rotary
Potentiometer*1

Keyestudio Ob-
stacle Avoidance
Sensor*1

Keyestudio
Line Track-
ing Sensor*1

Keyestudio
DIY Joystick
Module*1

Keyestudio
HC-SR04 Ul-
trasonic sensor
*1

Keyestudio DIY-
Common Cathode
RGB Module *1

Keyestudio XHT11
Temperature and
Humidity Sensor *1

Keyestudio
ADXL345
Acceleration
Sensor*1

MicroUSB
Cable*1

3PDupont
Wire*6

4PDupont
Wire*3

5PDupont Wire*1

Wiring Diagram

6.3. 3. Comprehensive Experiments: 547

keyestudio WiKi

Test Code

//**
/*
* Filename : Comprehensive experiment
* Description : Multiple sensors/modules work together
* Auther : http//www.keyestudio.com
*/
#include "xht11.h"
#include "adxl345_io.h"

//ADXL345 sda-->21,scl-->22
adxl345 adxl345(21, 22);

//xht11 to gpio15
xht11 xht(15);

//rgb is connected to 4,0,2
int ledPins[] = {4, 0, 2}; //define red, green, blue led pins
const byte chns[] = {0, 1, 2}; //define the pwm channels
int red, green, blue;

//Rocker module port
int X = 35;
int Y = 34;
int KEY = 32;

//Potentiometer pin is connected to analog port 33
int resPin = 33;

//Trace sensor pin connected to IO port 14
int TrackingPin = 14;

//LED is Connected to GP5
#define PIN_LED 5 // the pin of the LED
#define CHAN 3

//Obstacle avoidance sensor is connected to GP27
int Avoid = 27;

//Ultrasonic sensor port
int Trig = 13;

(continues on next page)

548 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

int Echo = 12;

//Key module port
int button = 23;

int PushCounter = 0;//Store the number of times a key is pressed
int yushu = 0;
unsigned char dht[4] = {0, 0, 0, 0};//Only the first 32 bits of data are received, not␣
→˓the parity bits
bool ir_flag = 1;
float out_X, out_Y, out_Z;

void counter() {
delay(10);
ir_flag = 0;
if (!digitalRead(button)) {
PushCounter++;

}
}

void setup() {
Serial.begin(9600);//Set baud rate to 9600
pinMode(KEY, INPUT);//Button of remote sensing module
ledcSetup(CHAN, 1000, 12);
ledcAttachPin(PIN_LED, CHAN);
pinMode(button, INPUT);//The key module
attachInterrupt(digitalPinToInterrupt(button), counter, FALLING); //External␣

→˓interrupt 0, falling edge fired
pinMode(Avoid, INPUT);//Obstacle avoidance sensor
pinMode(Trig, OUTPUT);//Ultrasonic module
pinMode(Echo, INPUT);
adxl345.Init();
for (int i = 0; i < 3; i++) { //setup the pwm channels,1KHz,8bit

ledcSetup(chns[i], 1000, 8);
ledcAttachPin(ledPins[i], chns[i]);

delay(1000);
}
}

void loop() {
yushu = PushCounter % 8;
if (yushu == 0) { //The remainder is 0
yushu_0(); //rgb displays

} else if (yushu == 1) { //The remainder is 1
yushu_1(); //Displays the high and low levels read by the tracking sensor

} else if (yushu == 2) { //The remainder is 2
yushu_2(); //Display temperature and humidity value

} else if (yushu == 3) { //The remainder is 3
yushu_3(); //Displays the rocker value

}else if (yushu == 4) { //The remainder is 4
yushu_4(); //Display potentiometer ADC value and potentiometer control LED

} else if (yushu == 5) { //The remainder is 5

(continues on next page)

6.3. 3. Comprehensive Experiments: 549

keyestudio WiKi

(continued from previous page)

yushu_5(); //Obstacle avoidance sensor detects obstacles
} else if (yushu == 6) { //The remainder is 6
yushu_6(); //Shows the distance detected by ultrasound

} else if (yushu == 7) { //The remainder is 7
yushu_7(); //ADXL345 triaxial acceleration value

}
}

//RGB
void yushu_0() {

red = random(0, 256);
green = random(0, 256);
blue = random(0, 256);
setColor(red, green, blue);
delay(200);

}
void setColor(byte r, byte g, byte b) {
ledcWrite(chns[0], 255 - r); //Common anode LED, low level to turn on the led.
ledcWrite(chns[1], 255 - g);
ledcWrite(chns[2], 255 - b);

}

void yushu_1() {
int val = digitalRead(TrackingPin);//Read the digital level output by the tracking␣

→˓sensor
Serial.print(val);//Serial port print value
if (val == 0) {//White val is 0 detected
Serial.print(" ");
Serial.println("White");
delay(100);

}
else {//Black val is 1 detected
Serial.print(" ");
Serial.println("Black");
delay(100);

}
}

void yushu_2() {
if (xht.receive(dht)) { //Returns true when checked correctly
Serial.print("RH:");
Serial.print(dht[0]); //The integral part of humidity, DHT [1] is the fractional part
Serial.print("% ");
Serial.print("Temp:");
Serial.print(dht[2]); //The integral part of temperature, DHT [3] is the fractional␣

→˓part
Serial.println("C");

} else { //read error
Serial.println("sensor error");

}
delay(1200);

}

(continues on next page)

550 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

void yushu_3() {
int x = analogRead(X);
int y = analogRead(Y);
int key = digitalRead(KEY);
Serial.print("X:");
Serial.print(x);
Serial.print(" Y:");
Serial.print(y);
Serial.print(" KEY:");
Serial.println(key);
delay(100);

}

void yushu_4() {
int adcVal = analogRead(resPin); //read adc
Serial.println(adcVal);
int pwmVal = adcVal; // adcVal re-map to pwmVal
ledcWrite(CHAN, pwmVal); // set the pulse width.
delay(10);

}

void yushu_5() {
int val = digitalRead(Avoid);
if (val == 0) {//Obstruction detected
Serial.println("There are obstacles");

}
else {//No obstructions detected

Serial.println("All going well");
}
delay(100);

}

void yushu_6() {
float distance = checkdistance();
Serial.print("distance:");
Serial.print(distance);
Serial.println("cm");
delay(100);

}

void yushu_7() {
adxl345.readXYZ(&out_X, &out_Y, &out_Z);
Serial.print(out_X);
Serial.print("g ");
Serial.print(out_Y);
Serial.print("g ");
Serial.print(out_Z);
Serial.println("g");
delay(100);

}

(continues on next page)

6.3. 3. Comprehensive Experiments: 551

keyestudio WiKi

(continued from previous page)

float checkdistance() {
digitalWrite(Trig, LOW);
delayMicroseconds(2);
digitalWrite(Trig, HIGH);
delayMicroseconds(10);
digitalWrite(Trig, LOW);
float distance = pulseIn(Echo, HIGH) / 58.00;
delay(10);
return distance;

}
//***

Code Explanation
1). Calculate how many times the button is pressed, divide it by 8, and get the remainder which is 0, 1 2, 3, 4, 5 , 6 and
7. According to different remainders, construct eight unique functions to control the experiment and realize different
functions.

2). Following the instructions, we can add or remove sensors/modules in the wiring, and then change the experimental
function in the code.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. At the beginning, the number of the button is 0 and
remainder is 0. Open the monitor and set baud rate to 9600.

Press the button, the RGB stops flashing, press once, the remainder is 1. The function of the experiment is to detect
black objects and white objects by a line tracking sensor. If the sensor does not detect an object or detects a black
object, val is 1, and the serial monitor displays the character “1 Black”. When a white object (reflective) is detected,
val is 0 and the serial monitor displays the character “0 White”, the serial monitor will display as follows:

Press a key twice, the time of pressing buttons is 2 and the remainder is 2. Read temperature and humidity values. As
shown below:

552 Chapter 6. Arduino tutorial

keyestudio WiKi

Press a key again, the time of pressing buttons is 3 and the remainder is 3. Read digital values at x, y and z axis of the
joystick module. As shown below:

Press the key for the fourth time, the remainder is 4. Then the potentiometer can adjust the PWM value at the GPI05
port to control LED brightness of the purple LED.

6.3. 3. Comprehensive Experiments: 553

keyestudio WiKi

Press the key for the fifth time, the remainder is 5. Then the ultrasonic sensor can detect obstacles, as shown below:

Press the key for the sixth time, the remainder is 6. Then the ultrasonic sensor can detect distance away from obstacles,
as shown below:

554 Chapter 6. Arduino tutorial

keyestudio WiKi

Press the key for seventh time and the remainder is 7. The monitor will print out the acceleration values.

Press the key for eighth time and the remainder is 0. Then the RGB will flash. If you press keys incessantly, remainders
will change in a loop way. So does functions.

6.3.21 Project 65: WiFi

Description
In the previous experiment, we have learned the WiFi Station mode, WiFi AP mode and WiFi AP+Station mode of
the ESP32. In this project, We will use ESP32’s WiFi Station mode to control the work of multiple sensors/modules
through APP connection with WiFi to achieve the effect of WiFi smart home.

Components

6.3. 3. Comprehensive Experiments: 555

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio
130 Mo-
tor*1

Keyestudio5V
Relay Mod-
ule*1

Servo*1

Keyestudio XHT11Temperature
and Humidity Sensor*1compatible
DHT11)

Keyestudio HC-SR04
Ultrasonic Sensor*1

3P
Dupont*2

4P Dupont*2 Smart
Phone/PC*1

Battery Holder*1 Battery (provided by
yourself)*6

Micro USB
Cable*1

Wiring Diagram

Install APP
(1) Android device (mobile phone/PC) APP:

A. We provide the Android APP installation package:

556 Chapter 6. Arduino tutorial

keyestudio WiKi

B. Now transfer the keyes wifi.apk file in the Android APP installation package to the Android phone or PC, click
the keyes wifi.apk file to enter the installation page, click “ALLOW” key, and then click “INSTALL” button. After
installation, click “OPEN” button to enter the APP interface.

6.3. 3. Comprehensive Experiments: 557

keyestudio WiKi

558 Chapter 6. Arduino tutorial

keyestudio WiKi

6.3. 3. Comprehensive Experiments: 559

keyestudio WiKi

560 Chapter 6. Arduino tutorial

keyestudio WiKi

(2) IOS device (mobile phone /iPad) APP:

A. Open App Store

B. Enter keyes link in the search box and click search, the download interface appears. Click “ ” to download and
install the APP of the keyes link. The following operations are similar to those of Android system. You can refer to the
steps of Android system above for operation.

Test Code
Note: You need to change the Wifi name and default Wifi password of the experimental code to your own Wifi name
and Wifi password.

//**
/*
* Filename : WiFi Smart Home.
* Description : WiFi APP controls Multiple sensors/modules work to achieve the effect␣
→˓of WiFi smart home.
* Auther : http//www.keyestudio.com
*/
#include <Arduino.h>

(continues on next page)

6.3. 3. Comprehensive Experiments: 561

keyestudio WiKi

(continued from previous page)

#include <WiFi.h>
#include <ESPmDNS.h>
#include <WiFiClient.h>

#include "xht11.h"
//gpio15
xht11 xht(27);
unsigned char dht[4] = {0, 0, 0, 0};

#include <ESP32Servo.h>
Servo myservo;
int servoPin = 21;
#define Relay 4
#define IN1 2 //IN1 corresponds to IN+
#define IN2 15 //IN2 corresponds to IN-
#define trigPin 12
#define echoPin 13

int distance1;
String dis_str;
int ip_flag = 1;
int ultra_state = 1;
int temp_state = 1;
int humidity_state = 1;

String item = "0";
const char* ssid = "ChinaNet-2.4G-0DF0"; //the name of user's wifi
const char* password = "ChinaNet@233"; //the password of user's wifi
WiFiServer server(80);
String unoData = "";

void setup() {
Serial.begin(115200);
pinMode(Relay, OUTPUT);
myservo.setPeriodHertz(50);
myservo.attach(servoPin, 500, 2500);
pinMode(IN1, OUTPUT);
pinMode(IN2, OUTPUT);

WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {

delay(500);
Serial.print(".");

}
Serial.println("");
Serial.print("Connected to ");
Serial.println(ssid);
Serial.print("IP address: ");
Serial.println(WiFi.localIP());
server.begin();
Serial.println("TCP server started");
MDNS.addService("http", "tcp", 80);

(continues on next page)

562 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

digitalWrite(IN1, LOW);
digitalWrite(IN2, LOW);
digitalWrite(Relay, LOW);
pinMode(trigPin, OUTPUT);
pinMode(echoPin, INPUT);

}

void loop() {
WiFiClient client = server.available();
if (!client) {

return;
}
while(client.connected() && !client.available()){

delay(1);
}
String req = client.readStringUntil('\r');
int addr_start = req.indexOf(' ');
int addr_end = req.indexOf(' ', addr_start + 1);
if (addr_start == -1 || addr_end == -1) {

Serial.print("Invalid request: ");
Serial.println(req);
return;

}
req = req.substring(addr_start + 1, addr_end);
item=req;
Serial.println(item);
String s;
if (req == "/")
{

IPAddress ip = WiFi.localIP();
String ipStr = String(ip[0]) + '.' + String(ip[1]) + '.' + String(ip[2]) + '.' +␣

→˓String(ip[3]);
s = "HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n\r\n<!DOCTYPE HTML>\r\n<html>

→˓Hello from ESP32 at ";
s += ipStr;
s += "</html>\r\n\r\n";
Serial.println("Sending 200");
client.println(s);

}
else if(req == "/btn/0")
{
Serial.write('a');
client.println(F("turn on the relay"));
digitalWrite(Relay, HIGH);

}
else if(req == "/btn/1")
{
Serial.write('b');
client.println(F("turn off the relay"));
digitalWrite(Relay, LOW);

}

(continues on next page)

6.3. 3. Comprehensive Experiments: 563

keyestudio WiKi

(continued from previous page)

else if(req == "/btn/2")
{
Serial.write('c');
client.println("Bring the steering gear over 180 degrees");
myservo.write(180);
delay(200);

}
else if(req == "/btn/3")
{
Serial.write('d');
client.println("Bring the steering gear over 0 degrees");
myservo.write(0);
delay(200);

}
else if(req == "/btn/4")
{
Serial.write('e');
client.println("esp32 already turn on the fans");
digitalWrite(IN1, LOW);
digitalWrite(IN2, HIGH);

}
else if(req == "/btn/5")
{
Serial.write('f');
client.println("esp32 already turn off the fans");
digitalWrite(IN1, LOW);
digitalWrite(IN2, LOW);

}
else if(req == "/btn/6")
{
Serial.write('g');
while(Serial.available() > 0)
{
unoData = Serial.readStringUntil('#');
client.println("Data");

}
while(ultra_state>0)

{
Serial.print("Distance = ");
Serial.print(checkdistance());
Serial.println("#");
Serial1.print("Distance = ");
Serial1.print(checkdistance());
Serial1.println("#");
int t_val1 = checkdistance();
client.print("Distance(cm) = ");
client.println(t_val1);
ultra_state = 0;

}
}
else if(req == "/btn/7")
{

(continues on next page)

564 Chapter 6. Arduino tutorial

keyestudio WiKi

(continued from previous page)

Serial.write('h');
client.println("turn off the ultrasonic");
ultra_state = 1;

}
else if(req == "/btn/8")
{
Serial.write('i');
while(Serial.available() > 0)
{
unoData = Serial.readStringUntil('#');
client.println(unoData);
}
while(temp_state>0)
{
if (xht.receive(dht)) {

Serial.print("Temperature = ");
Serial.print(dht[2],1);
Serial.println("#");
Serial1.print("Temperature = ");
Serial1.print(dht[2],1);
Serial1.println("#");
int t_val2 = dht[2];
client.print("Temperature(℃) = ");
client.println(t_val2);

}
temp_state = 0;

}
}
else if(req == "/btn/9")
{
Serial.write('j');
client.println("turn off the temperature");
temp_state = 1;

}
else if(req == "/btn/10")
{
Serial.write('k');
while(Serial.available() > 0)
{
unoData = Serial.readStringUntil('#');
client.println(unoData);

}
while(humidity_state > 0)
{
if (xht.receive(dht)) {
Serial.print("Humidity = ");
Serial.print(dht[0],1);
Serial.println("#");
Serial1.print("Humidity = ");
Serial1.print(dht[0],1);
Serial1.println("#");
int t_val3 = dht[0];

(continues on next page)

6.3. 3. Comprehensive Experiments: 565

keyestudio WiKi

(continued from previous page)

client.print("Humidity(%) = ");
client.println(t_val3);

}
humidity_state = 0;

}
}
else if(req == "/btn/11")
{
Serial.write('l');
client.println("turn off the humidity");
humidity_state = 1;
}

//client.print(s);
client.stop();

}

int checkdistance() {
digitalWrite(12, LOW);
delayMicroseconds(2);
digitalWrite(12, HIGH);
delayMicroseconds(10);
digitalWrite(12, LOW);
int distance = pulseIn(13, HIGH) / 58;

delay(10);
return distance;

}
//**

Test Result
After the code has been modified correctly, connect the external power supply and power on. Switch the DIP switch
ON the ESP32 expansion board to the ON end, compile and upload the code to the ESP32 mainboard.If uploading the

code is not successfulpress the Boot button on the ESP32 mainboard with your hand after click , release it when
the upload progress percentage appears.)

Open the serial monitor and set baud rate to 115200, then the monitor prints the detected WiFi IP address. (If open the
serial monitor and set the baud rate to 115200, the information is not displayed, please press the button RESET of the
ESP32)

566 Chapter 6. Arduino tutorial

keyestudio WiKi

Open WiFi APP, enter the detected WIFI IP address in the text box in front of the WIFI button (for example, the IP
address detected by the serial monitor above is 192.168.0.156). Next, click the WIFI button to connect to WIFI, at the
same time, the corresponding WiFi IP address will be displayed in the text box :“Hello from ESP32 at 192.168.0.156”,
then the APP has connected to WiFi.(WiFi IP address sometimes changes, if the original IP address can not use, you
need to re-check it.)

After the APP is connected to WiFi, the following operations are performed:

6.3. 3. Comprehensive Experiments: 567

keyestudio WiKi

1) Click button, the relay will be opened, the APP will

display and the indicator lights up on the module. Click again,

the relay will be closed , the APP will display and the indicator on the module
is off.

2) Click buttonthe servo rotates 180°the APP will display againthe APP will dis-

play the servo rotates 0°.

3) Click buttonthe motorwith small fan bladesrotatesthe APP

will display againclose the motorthe APP will display

4) Click buttonthe ultrasonic sensor detects the distance, put an object in front of the ultrasonic sen-

sor, the APP will display different distances show different numbers, the distance

between the object and the ultrasonic sensor is 14cmclick again, turn off the sensor, the APP

will display .

5) Click buttonthe temperature and humidity sensor measures the temperature in the environment,

the APP will display different temperatures show different temperature val-

uesthe ambient temperature is 28 ° C., click again, turn off the sensorthe APP will display

.

568 Chapter 6. Arduino tutorial

keyestudio WiKi

6) Click buttonthe temperature and humidity sensor measures the humidity in the environ-

ment,the APP will display different humidity show different humidity val-

ues, the ambient humidity is 52%click againturn off the sensor, the APP will display

.

6.3. 3. Comprehensive Experiments: 569

keyestudio WiKi

570 Chapter 6. Arduino tutorial

CHAPTER

SEVEN

ARDUINO(RASPBERRY-PI) TUTORIAL

7.1 1. Install Raspberry Pi OS System

7.1.1 1.1. Hardware Tool

• Raspberry Pi 4B/3B/2B

• Above 8G TFT SD Card

• Card Reader

• Computer and other parts

7.1.2 1.2. Software Tool

Windows System

(1) Install putty:

Download Putty: https://www.chiark.greenend.org.uk/~sgtatham/putty/

571

https://www.chiark.greenend.org.uk/~sgtatham/putty/

keyestudio WiKi

572 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

After downloading the driver file double-click it and tap “Next”.

7.1. 1. Install Raspberry Pi OS System 573

keyestudio WiKi

Click “Next”.

574 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Select “Install Putty files” and click “Install”.

7.1. 1. Install Raspberry Pi OS System 575

keyestudio WiKi

After a few seconds, click “Finish”.

576 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(2) SSH Remote Login software -WinSCP

Download WinSCP: https://winscp.net/eng/download.php

After the download, click and .

Click “Accept”.

7.1. 1. Install Raspberry Pi OS System 577

https://winscp.net/eng/download.php

keyestudio WiKi

Follow the below steps to finish the installation.

578 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.1. 1. Install Raspberry Pi OS System 579

keyestudio WiKi

580 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.1. 1. Install Raspberry Pi OS System 581

keyestudio WiKi

(3) SD Card Formatter

Format TFT card tool

Download SD Card Formatter

http://www.canadiancontent.net/tech/download/SD_Card_Formatter.html

582 Chapter 7. Arduino(Raspberry-Pi) tutorial

http://www.canadiancontent.net/tech/download/SD_Card_Formatter.html

keyestudio WiKi

7.1. 1. Install Raspberry Pi OS System 583

keyestudio WiKi

Unzip the SDCardFormatterv5_WinEN package, double-click to run it.

docs/4.Arduino_C_Tutorial(Raspberry-Pi)/media/046c67e4072093ee3dad27e8088fcf9f.png

Click “Next” and choose

docs/4.Arduino_C_Tutorial(Raspberry-Pi)/media/13dc08ae2b5cb52ae3d7ea198134d778.png

, then tap “Next” .

584 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Click “Next” and “Install”.

7.1. 1. Install Raspberry Pi OS System 585

keyestudio WiKi

After a few seconds, click “Finish”.

586 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(4) Burn Win32DiskImager

Download Linkhttps://sourceforge.net/projects/win32diskimager/

After the download, double-click and tap “Run”.

7.1. 1. Install Raspberry Pi OS System 587

https://sourceforge.net/projects/win32diskimager/

keyestudio WiKi

Select and tap “Next”.

588 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Click “Browse. . . ” and find out the folder where the Win32DiskImager is located, tap “Next” .

7.1. 1. Install Raspberry Pi OS System 589

keyestudio WiKi

Tick , click “Next” and “Install”.

590 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

After a few seconds, click “Finish”.

The installation is finished.

7.1. 1. Install Raspberry Pi OS System 591

keyestudio WiKi

(5) WNetWatcher

Scan to search ip address software tool—WNetWatcher

Download Linkhttp://www.nirsoft.net/utils/wnetwatcher.zip

(6) Raspberry Pi Imager

Download Address

https://www.raspberrypi.org/downloads/raspberry-pi-os/

Old Version:

Raspbianhttps://downloads.raspberrypi.org/raspbian/images/ Raspbian fullhttps://downloads.raspberrypi.org/
raspbian_full/images/ Raspbian litehttps://downloads.raspberrypi.org/raspbian_lite/images/ We use the 2020.05.28
version in the tutorial and recommend you to use this version. (Please download this version as shown in the picture
below.) https://downloads.raspberrypi.org/raspios_full_armhf/images/raspios_full_armhf-2021-05-28/

592 Chapter 7. Arduino(Raspberry-Pi) tutorial

http://www.nirsoft.net/utils/wnetwatcher.zip
https://www.raspberrypi.org/downloads/raspberry-pi-os/
https://downloads.raspberrypi.org/raspbian/images/
https://downloads.raspberrypi.org/raspbian_full/images/
https://downloads.raspberrypi.org/raspbian_full/images/
https://downloads.raspberrypi.org/raspbian_lite/images/
https://downloads.raspberrypi.org/raspios_full_armhf/images/raspios_full_armhf-2021-05-28/

keyestudio WiKi

7.1.3 1.3. Install Raspberry Pi OS on Raspberry Pi 4B:

Insert TFT RAM card to card reader, then interface card reader to USB port of computer.

Format TFT RAM card with SD Card Formatter software, as shown below:

7.1. 1. Install Raspberry Pi OS System 593

keyestudio WiKi

594 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.1. 1. Install Raspberry Pi OS System 595

keyestudio WiKi

(1) Burn System

Burn the Raspberry Pi OS system to TFT card using Win32DiskImager software

596 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Don’t eject card reader after burning mirror system, build a file named SSH, then delete .txt .

The SSH login function can be activated by copying SSH file to boot category, as shown below.

7.1. 1. Install Raspberry Pi OS System 597

keyestudio WiKi

Eject Card Reader

(2) Log in system

(Raspberry and PC should be in the same local area network.)

1). Insert TFT memory card into Raspberry Pi, connect internet cable and plug in power. If you have screen and HDMI
cable of Raspberry Pi, you could view Raspberry Pi OS activating. If not, you can enter the desktop of Raspberry Pi
via SSH remote login software—WinSCP and xrdp.

598 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

2). Use the WNetWatcher software to find the IP address of the Raspberry Pi.

If there is no IP address as shown in the figure above, follow the following steps to set it.

7.1. 1. Install Raspberry Pi OS System 599

keyestudio WiKi

600 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Once the setup is complete, record the IP and MAC addresses of the Raspberry PI. As shown in the red box below, the
MAC address of the Raspberry PI is b8:27:eb:17:16:01, and the ip address is 192.168.0.57.

7.1. 1. Install Raspberry Pi OS System 601

keyestudio WiKi

If you do not know the mac address and the ip address of the Raspberry PI, then unplug the network cable of the
Raspberry PI first, open the WNetWatcher query, and the detection times will be displayed on the right side of the
interface. Connect the Raspberry PI cable and query it once using WNetWatcher, and the Raspberry PI address is
detected one less time than the other addresses. Then write down the ip and mac addresses.

(3) Remote Login

Enter default user name, password and host name on WinSCP to log in.
The same network only receives one Raspberry Pi.

602 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.1. 1. Install Raspberry Pi OS System 603

keyestudio WiKi

604 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(4) Check ip and mac address

Click to open terminal input the passwordraspberry, and press“Enter”on keyboard.

7.1. 1. Install Raspberry Pi OS System 605

keyestudio WiKi

Logging in successfully, open the terminal, input ip a and tap“Enter”to check ip and mac address.

606 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(5) Fix ip address of Raspberry Pi

Ip address is changeable, therefore, we need to make ip address fixed for convenient use.

Follow the below steps
Switch to root user

If without root user’s password

Set root passward

Input passwordin the terminalsudo passwd root to set password

Switch to root user

Input su root

Fix the configuration file of ip address

Firstly change ip address of the following configuration file.

#New ip addressaddress 192.168.0.57

Copy the above new address to terminal and press“Enter”.

Configuration File

echo -e '

auto eth0

iface eth0 inet static

\#Change IP address

address 192.168.0.57

netmask 255.255.255.0

gateway 192.168.1.1

network 192.168.1.0

broadcast 192.168.1.255

dns-domain 119.29.29.29

dns-nameservers 119.29.29.29

metric 0

mtu 1492

'\>/etc/network/interfaces.d/eth0

As shown below:

7.1. 1. Install Raspberry Pi OS System 607

keyestudio WiKi

Reboot the system and activate the configuration file

Input the restart command in the terminal: sudo reboot

You could log in via fixed ip afterwards.

Check IP and insure ip address fixed well

(6) Log in Desktop on Raspberry Pi Wirelessly

In fact, we can log in desktop on Raspberry Pi Wirelessly even without screen and HDMI cable.

VNC and Xrdp are commonly used to log in desktop of Raspberry Pi wirelessly.

Install Xrdp Service in the terminal
Installation commands:

Switch to Root User: su root

Install apt-get install xrdp

Enter y and press “Enter”

608 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

As shown below:

(7) Open the remote desktop connection on Windows

Press WIN+R on keyboard and enter mstsc.exe

As shown below

Input ip address of Raspberry Pi, as shown below.

Click“Connect”and tap“Connect”.

192.168.0.57 is ip address we use, you could change into yours ip address.

7.1. 1. Install Raspberry Pi OS System 609

keyestudio WiKi

Click “Yes”.

Input user name: pi, default password: raspberry, as shown below:

610 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Click “OK” or “Enter” , you will view the desktop of Raspberry Pi OS, as shown below:

Now, we finish the basic configuration of Raspberry Pi OS.

7.1. 1. Install Raspberry Pi OS System 611

keyestudio WiKi

7.2 2. Preparations for C language:

C language is a programming language with a considerably fast running speed. There are numerous software and
system core code written in it, such as Linux system. Notably, hardware MCU and embedded class are not exception.
Thereby, it makes sense to learn the C language to control hardware.

7.2.1 2.1. Hardware

(1) Raspberry Pi 4B:

Raspberry Pi 4B Raspberry Pi 4B Model

Hardware Interfaces

612 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(2) ESP32 Expansion Board:

(3) Raspberry Pi+ESP32 mainboard+ESP32 Expansion Board+USB Cableare as follows

7.2. 2. Preparations for C language: 613

keyestudio WiKi

7.2.2 2.2. Copy Example Code Folder to Raspberry Pi:

Place example code folder to the pi folder of Raspberry Pi. and extract the example code from
ESP32_C_code(Raspberry-Pi).zip file(the default is .zip file), as shown below:

614 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.2. 2. Preparations for C language: 615

keyestudio WiKi

Double-click ESP32_C_code(Raspberry-Pi), as shown below.

616 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.3 3. Linux SystemRaspberry Pi:

7.3.1 3.1. Download and install Arduino IDE

1First, click on Raspberry Pi’s browser.

2Download Arduino IDE from the Arduino official websitewww.arduino.cc/en/software , as shown below:

7.3. 3. Linux SystemRaspberry Pi: 617

keyestudio WiKi

(3) There are various versions of IDE for Arduino. Just download a version compatible with your system. (install the
lasted Arduino IDE 1.8.19) and click “Linux ARM 32 bits”.

618 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(4) You just need to click “JUST DOWNLOAD”.

After a few seconds, the lasted Arduino IDEArduino 1.8.19 versionzip file can be directly downloaded.

7.3. 3. Linux SystemRaspberry Pi: 619

keyestudio WiKi

(5) Click , then find the Downloads file from the pi and tap it. Then we can see the downloaded package
“arduino-1.8.19-linuxarm.tar.xz” and unzip it.

620 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

6Click find“install.sh” file and tap itclick “Execute” to install the Arduino IDE.

7.3. 3. Linux SystemRaspberry Pi: 621

keyestudio WiKi

622 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7Click select and click to open the Arduino
IDE.

7.3. 3. Linux SystemRaspberry Pi: 623

keyestudio WiKi

7.3.2 3.2. Install the ESP32 on Arduino IDE

Noteyou need to download Arduino IDE 1.8.5 or advanced version to install the ESP32.

(1Click select and click to open the Arduino
IDE.

624 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(2 Click “File” →“Preferences”copy the website address https://dl.espressif.com/dl/package_esp32_index.json in the
“Additional Boards Manager URLs:” and click “OK” .

7.3. 3. Linux SystemRaspberry Pi: 625

https://dl.espressif.com/dl/package_esp32_index.json

keyestudio WiKi

626 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

3 Click “Tools” → “Board:” then click “Boards Manager. . .”to enter “Boards Manager”. Enter “ESP32” as follows,
then click “Install” .

7.3. 3. Linux SystemRaspberry Pi: 627

keyestudio WiKi

628 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(4) After installing, click “Close”.

7.3. 3. Linux SystemRaspberry Pi: 629

keyestudio WiKi

7.3.3 3.3. Arduino IDE Setting

Click select and click to open the Arduino
IDE.

When downloading the sketch to the board, you must select the correct name of Arduino board that matches the board
connected to your computer. As shown below: (Note: we use the ESP32 board in this tutorial; therefore, we select
ESP32)

630 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Then select the correct COM port (you can see the corresponding COM port after the ESP32 is connected to the

7.3. 3. Linux SystemRaspberry Pi: 631

keyestudio WiKi

Raspberry Pi via a USB cable.).

632 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.3. 3. Linux SystemRaspberry Pi: 633

keyestudio WiKi

A- Used to verify whether there is any compiling mistakes or not. B- Used to upload the sketch to your Arduino board.
C- Used to create shortcut window of a new sketch. D- Used to directly open an example sketch. E- Used to save the
sketch. F- Used to send the serial data received from board to the serial monitor.

7.4 4. How to Add Libraries? :

7.4.1 4.1. What are Libraries ?:

Librariesare a collection of code that make it easy for you to connect sensors,displays, modules, etc. For example,
the built-in LiquidCrystal library helps talk to LCD displays. There are hundreds of additional libraries available on
the Internet for download. The built-in libraries and some of these additional libraries are listed in the reference.
(https://www.arduino.cc/en/Reference/Libraries)

634 Chapter 7. Arduino(Raspberry-Pi) tutorial

https://www.arduino.cc/en/Reference/Libraries

keyestudio WiKi

7.4.2 4.2. How to Install a Library ?:

Here we will introduce the most simple way to add libraries .

Step 1: Click tap “Downloads” file and click “arduino-1.8.19” file then find and

click“libraries” file from the “arduino-1.8.19” file.

7.4. 4. How to Add Libraries? : 635

keyestudio WiKi

636 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Step 2: Copy and paste the Arduino_C_Libraries(Raspberry-Pi) file (default .ZIP file) from the provided Arduino
Libraries folder into the Libraries file opened in the first stepthe route is/home/pi/Downloads/arduino-1.8.19/libraries.

7.4. 4. How to Add Libraries? : 637

keyestudio WiKi

Step 3: Unzip the Arduino C package in the libraries folderfor exampleclick “Adafruit_NeoPixel.zip”file

select and tap“Extract Here”to unzip the “Adafruit_NeoPixel.zip”file.

638 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.4. 4. How to Add Libraries? : 639

keyestudio WiKi

640 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5 5. Basic Projects

When we get the kit, we can see that there are 42 sensors/modules in the kit, which contain the corresponding ESP32
mainboard, ESP32 Expansion Board and wirings. Here, we will connect the 42 sensors individually to the ESP32
mainboard and the ESP32 Expansion Board using wirings. Then run the corresponding test code to test the function of
each sensor separately. Our next lesson is to study the principles of individual modules/sensors from simple to complex
as well as some extended applications of sensors to consolidate and deepen our understanding of the kits.

Note: When connecting the module/sensor wirings in the projects, the wiring method and position must be followed in
the document. What’s more, do not misconnect the power supply and signal pin, otherwise there may be no experimental
results or damage to the modules/sensors.

7.5.1 Project 1: Hello World

Overview
For ESP32 beginners, we will start with some simple things. In this project, you only need a ESP32 mainboard, a USB
cable and Raspberry Pi to complete the “Hello World!” project, which is a test of communication between the ESP32
mainboard and the Raspberry Pi as well as a primary project.

Wiring Diagram
In this project, we will use a USB cable to connect the ESP32 to Raspberry Pi.

7.5. 5. Basic Projects 641

keyestudio WiKi

Test Code

//***
/*
* Filename : Hello World
* Description : Enter the letter R,and the serial port displays"Hello World".
* Auther :http//www.keyestudio.com
*/
char val;// defines variable "val"
void setup()
{
Serial.begin(9600);// sets baudrate to 9600
}
void loop()
{
if (Serial.available() > 0) {
val=Serial.read();// reads symbols assigns to "val"
if(val=='R')// checks input for the letter "R"
{ // if so,
Serial.println("Hello World!");// shows “Hello World !”.

}
}

}
//***

Before uploading the test code to the ESP32click “Tools” → “Board”select “ESP32 Wrover Module”.

642 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Select the correct serial port

7.5. 5. Basic Projects 643

keyestudio WiKi

Click to upload the test code to the ESP32.

644 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Note: If the uploading code fails, you can press and hold the Boot button on the ESP32 after clicking and release
the Boot button after the percentage of uploading progress appears, as shown below:

The code is uploaded successfully

7.5. 5. Basic Projects 645

keyestudio WiKi

Test Result

After uploading successfullywe will use a USB cable to power onclick , set the baud rate to 9600we need to press
the reset button on the ESP32 motherboard and enter the letter “R”click “Send”then the serial monitor prints “Hello
World!”.

646 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.2 Project 2: Lighting up LED

Overview
In this kit, we have a Keyestudio Purple Module, which is very simple to control. If you want to light up the LED, you
just need to make a certain voltage across it.

In the project, we will control the high and low level of the signal end S through programming, so as to control the
LED on and off.

Working Principle
The two circuit diagrams are given.

The left one is wrong wiring-up diagram. Why? Theoretically, when the S terminal outputs high levels, the LED will
receive the voltage and light up.

Due to limitation of IO ports of ESP32 board, weak current can’t make LED brighten.

The right one is correct wiring-up diagram. GND and VCC are powered up. When the S terminal is a high level, the
triode Q1 will be connected and LED will light up(note: current passes through LED and R3 to reach GND by VCC
not IO ports). Conversely, when the S terminal is a low level, the triode Q1 will be disconnected and LED will go off.

7.5. 5. Basic Projects 647

keyestudio WiKi

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Purple LED Module*1

3P Dupont Wire*1 Micro USB Cable*1

Wiring Diagram

Test Code

//***
/*
* Filename : Blink

(continues on next page)

648 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

* Description : led Flashing 1 s
* Auther : http://www.keyestudio.com
*/
int ledPin = 0; //Define LED pin connection to GPIO0
void setup() {

pinMode(ledPin, OUTPUT);//Set mode to output
}

void loop() {
digitalWrite(ledPin, HIGH); //Output high level, turn on led
delay(1000);//Delay 1000 ms
digitalWrite(ledPin, LOW); //Output low level,turn off led
delay(1000);//Delay 1000 ms

}
//***

Code Explanation
1). PinMode(pin,mode): Pin is the ESP32 GPIO pin number used to set the mode, here we set pin 0 as output mode.

2). DigitalWrite(pin, value): Pin is the GPIO pin, which is defined GP0 here. Valueis the digital level that we will
outputHIGH/LOW. If the pin is configured to OUTPUT using pinMode(), its voltage is set to the corresponding value:
3.3V is HIGH,low level is 0V (ground). When connect the LEDs to the pins, using the digitalWriteHIGH, the LEDs
will get dim.

3). Setup() executes once, while loop() executes all the time. Delay (ms) is delay function, ms is the number of
milliseconds to pause. Data type: unsigned longrange 0~ 4,294,967,295 (2^32 - 1).

4). Firstly, we connect the module signal to ledPIN, namely GP0, and set it to a high level to light the LEDs on the
module. Then delay 1000 ms, controlling the LEDs on the module light up for 1s and off for 1s to achieve the flashing
effect.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onwe will see that the LED in the circuit will flash alternately.

7.5.3 Project 3: Traffic Lights Module

Overview
In this lesson, we will learn how to control multiple LED lights and simulate the operation of traffic lights.

Traffic lights are signal devices positioned at road intersections, pedestrian crossings, and other locations to control
flows of traffic.

In this kit, we will use the traffic light module to simulate the traffic light.

Working Principle

7.5. 5. Basic Projects 649

keyestudio WiKi

In previous lesson, we already know how to control an LED. In this part, we only need to control three separated LEDs.
Input high levels to the signal R(3.3V), then the red LED will be on.

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIY Traffic Lights Mod-
ule*1

5P Dupont Wire*1 Micro USB Cable*1

Wiring Diagram

650 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//***
/*
* Filename : Traffic_Light
* Description : Simulated traffic lights
* Auther : http://www.keyestudio.com
*/
int redPin = 15; //Red LED connected to GPIO15
int yellowPin = 2; //Yellow LED connected to GPIO2
int greenPin = 0; //Green LED connected to GPIO0

void setup() {
//LED interfaces are set to output mode
pinMode(greenPin, OUTPUT);
pinMode(yellowPin, OUTPUT);
pinMode(redPin, OUTPUT);

}

void loop() {
digitalWrite(greenPin, HIGH); //Lighting green LED
delay(5000); //Delay for 5 seconds
digitalWrite(greenPin, LOW); //Turn off green LEDS
for (int i = 1; i <= 3; i = i + 1) { //run three times
digitalWrite(yellowPin, HIGH); //Lighting yellow LED

(continues on next page)

7.5. 5. Basic Projects 651

keyestudio WiKi

(continued from previous page)

delay(500); //Delay for 0.5 seconds
digitalWrite(yellowPin, LOW); //Turn off yellow LED
delay(500); //Delay for 0.5 seconds

}
digitalWrite(redPin, HIGH); //Lighting red LED
delay(5000); //Delay5s
digitalWrite(redPin, LOW); //Turn off red LED

}
//***

Code Explanation
Create pins, set pins mode and delayed functions.

We use the function for(). for (int i = 1; i <= 3; i = i + 1) represents the variable i adds 1 fir each time from 1 to 3.

The function for (int i = 255; i >= 0; i = i - 1) indicates that i reduces by 1 each time. When i<0, exit the for() loop and
execute 256 times.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onwe will see that the green LED will be on for 5s then off,
the yellow LED will flash for 3s then go off and the red one will be on for 5s then off, the three LED modules will
simulate the circulation of traffic lights automatically .

7.5.4 Project 4: Laser Sensor

Description
Lasers are widely used to cut, weld, surface treat, and more on specific materials. The energy of the laser is very high.
The toy laser pointer may cause glare to the human eye, and it may cause retinal damage for a long time. my country
also prohibits the use of laser to illuminate the aircraft.

Working Principle
The laser head sensor module is mainly composed of a laser head with a light-emitting die, a condenser lens, and a
copper adjustable sleeve. We can see the circuit schematic diagram of this module which is very similar to the LED

652 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

we have learned. They are all driven by triodes. A high-level digital signal is directly input at the signal end, then the
sensor will start to work; if inputting low levels, the sensor won’t work.

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIY Laser Module*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

7.5. 5. Basic Projects 653

keyestudio WiKi

Test Code

//***
/*
* Filename : Laser sensor
* Description : Laser light flashing
* Auther : http://www.keyestudio.com
*/
int laserPin = 0; //Define the laser pin as GPIO 0
void setup() {
pinMode(laserPin, OUTPUT);//Define laser pin as output mode

}

void loop() {
digitalWrite(laserPin, HIGH); //Open the laser
delay(2000); //Delay 2 seconds
digitalWrite(laserPin, LOW); //Shut down the laser
delay(2000); //Delay 2 seconds

}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onwe will see that the laser module will emit red laser signals
for 2 seconds and stop emitting signals for 2 seconds on a cycle.

654 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.5 Project 5: Breathing LED

Overview
A“breathing LED”is a phenomenon where an LED’s brightness smoothly changes from dark to bright and back to dark,
continuing to do so and giving the illusion of an LED“breathing. This phenomenon is similar to a lung breathing in
and out. So how to control LED’s brightness? We need to take advantage of PWMyou can refer to experiment six.

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Purple LED Module*1

3P Dupont Wire*1 MicroUSB Cable*1

Connection Diagram

7.5. 5. Basic Projects 655

keyestudio WiKi

Test Code

//**
/*
* Filename : Breathing Led
* Description : Make led light fade in and out, just like breathing.
* Auther : http//www.keyestudio.com
*/
#define PIN_LED 0 //define the led pin
#define CHN 0 //define the pwm channel
#define FRQ 1000 //define the pwm frequency
#define PWM_BIT 8 //define the pwm precision
void setup() {
ledcSetup(CHN, FRQ, PWM_BIT); //setup pwm channel
ledcAttachPin(PIN_LED, CHN); //attach the led pin to pwm channel

}

void loop() {
for (int i = 0; i < 255; i++) { //make light fade in

ledcWrite(CHN, i);
delay(10);

}
for (int i = 255; i > -1; i--) { //make light fade out
ledcWrite(CHN, i);
delay(10);

}
}
//***

656 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onwe will see that the LED on the module gradually gets
dimmer then brighter, cyclically, like human breathe.

7.5.6 Project 6: RGB Module

Overview
Among these modules is a RGB module. It adopts a F10-full color RGB foggy common cathode LED. We connect
the RGB module to the PWM port of MCU and the other pin to GND(for common anode RGB, the rest pin will be
connected to VCC). So what is PWM?

PWM is a means of controlling the analog output via digital means. Digital control is used to generate square waves
with different duty cycles (a signal that constantly switches between high and low levels) to control the analog output.
In general, the input voltages of ports are 0V and 5V. What if the 3V is required? Or a switch among 1V, 3V and 3.5V?
We cannot change resistors constantly. For this reason, we resort to PWM.

For Arduino digital port voltage outputs, there are only LOW and HIGH levels, which correspond to the voltage outputs
of 0V and 5V respectively. You can define LOW as “0” and HIGH as “1”, and let the Arduino output five hundred “0”
or “1” within 1 second. If output five hundred “1”, that is 5V; if all of which is “0”,that is 0V; if output 250 01 pattern,
that is 2.5V.

This process can be likened to showing a movie. The movie we watch are not completely continuous. Actually, it
generates 25 pictures per second, which cannot be told by human eyes. Therefore, we mistake it as a continuous
process. PWM works in the same way. To output different voltages, we need to control the ratio of 0 and 1. The
more‘0’or‘1’ output per unit time, the more accurate the control.

Working Principle
For our experiment, we will control the RGB module to display different colors through three PWM values.

7.5. 5. Basic Projects 657

keyestudio WiKi

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Common Cathode RGB Mod-
ule *1

4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

658 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : RGB LED
* Description : Use RGBLED to show random color.
* Auther : http//www.keyestudio.com
*/
int ledPins[] = {0, 2, 15}; //define red, green, blue led pins
const byte chns[] = {0, 1, 2}; //define the pwm channels
int red, green, blue;
void setup() {
for (int i = 0; i < 3; i++) { //setup the pwm channels,1KHz,8bit
ledcSetup(chns[i], 1000, 8);
ledcAttachPin(ledPins[i], chns[i]);

}
}

void loop() {
red = random(0, 256);
green = random(0, 256);
blue = random(0, 256);
setColor(red, green, blue);
delay(200);

}

void setColor(byte r, byte g, byte b) {
(continues on next page)

7.5. 5. Basic Projects 659

keyestudio WiKi

(continued from previous page)

ledcWrite(chns[0], 255 - r); //Common anode LED, low level to turn on the led.
ledcWrite(chns[1], 255 - g);
ledcWrite(chns[2], 255 - b);

}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onwe will see that the RGB LED on the module starts to
display random colors.

7.5.7 Project 7: Button Sensor

Overview
In this kit, there is a Keyestudio single-channel button module, which mainly uses a tact switch and comes with a yellow
button cap.

In previous lessons, we learned how to make the pins of our single-chip microcomputer output a high level or low level.
In this experiment, we will read the high level (3.3V) and low level (0V).

We can determine whether the button on the sensor is pressed by reading the high and low level of the S terminal on
the sensor.

Working Principle
The button module has four pins. The pin 1 is connected to the pin 3 and the pin 2 is linked with the pin 4. When
the button is not pressed, they are disconnected. Yet, when the button is pressed, they are connected. If the button is
released, the signal end is high level.

660 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIY Button Module*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

7.5. 5. Basic Projects 661

keyestudio WiKi

Test Code

//***
/*
* Filename : button
* Description : Read key value
* Auther : http://www.keyestudio.com
*/
int val = 0; //Useto store key values
int button = 15; //The pin of the button is connected to GP15
void setup() {
Serial.begin(9600); //Start the serial port monitor and set baud rate to 9600
pinMode(button, INPUT); //Set key pin to input mode

}

void loop() {
val = digitalRead(button); //Read the value of the key and assign it to the variable␣

→˓val
Serial.print(val); //Print it on the serial port
if (val == 0) { //Press the key to read the low level and print the press related␣

→˓information
Serial.print(" ");
Serial.println("Press the botton");
delay(100);

}

else { //Print information about key release
Serial.print(" ");

(continues on next page)

662 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

Serial.println("Loosen the botton");
delay(100);

}
}
//**

Code Explanation
1). pinMode(button, INPUT); set the pin of the button module to GP15 and INPUT.

Configure INPUT through pinMode(). INPUT must use the pull-up or pull-down resistor(ours module has the pull-up
resistor R1).

2). Serial.begin(9600): Initialize serial communication and set the baud rate to 9600.

3). digitalRead(button): read the digital level of the button(HIGH or LOW). If this pin is not connected to pins, the
digitalRead() will return HIGH or LOW.

4). if. . . else. . . if the logic behind () is true, execute the code of (); otherwise execute the code of else.

5). If the button is pressed, the signal end is low level, GP15 is low level and Val is 0. Then the monitor will show
the corresponding value and characters; otherwise, the sensor is released, val is 1 and monitor will show 1 and other
characters

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onopen the serial monitor and set the baud rate to 9600. We
need to press the reset button on the ESP32, then the serial monitor will display the corresponding data and characters.
When the button is pressed, val is 0, the monitor will show “Press the button”when the button is released, val is 1the
monitor will show “Loosen the button”; as shown below

7.5. 5. Basic Projects 663

keyestudio WiKi

7.5.8 Project 8: Capacitive Sensor

Description
In this kit, there is a capacitive touch module which mainly uses a TTP223-BA6 chip. It is a touch detection chip,
which provides a touch button, and its function is to replace the traditional button with a variable area button. When
we power on, the sensor needs about 0.5 seconds to stabilize. Do not touch the keys during this time period. At this
time, all functions are disabled, and self-calibration is always performed. The calibration period is about 4 seconds.
We display the test results in the shell.

Working Principle
When our fingers touch the module, the signal S outputs high levels, the red LED on the module flashes. We can
determine if the button is pressed or not by reading high and low levels on the sensor.

Required Components

664 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIY Capacitive Module*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

//***
/*
* Filename : Touch sensor
* Description : Reading touch value

(continues on next page)

7.5. 5. Basic Projects 665

keyestudio WiKi

(continued from previous page)

* Auther : http://www.keyestudio.com
*/
int val = 0;
int touch = 15; //The key of PIN
void setup() {

Serial.begin(9600);//Baud rate is 9600
pinMode(touch, INPUT);//Setting input mode

}

void loop() {
val = digitalRead(touch);//Read the value of the key
Serial.print(val);//Print out key values
if (val == 1) {//Press for high level
Serial.print(" ");
Serial.println("Press the button");
delay(100);

}
else {//Release to low level

Serial.print(" ");
Serial.println("Loosen the button");
delay(100);

}
}
//***

Code Explanation
When we touch the sensor, the Shell monitor will show “Pressed the button!”, if not, “Loosen the button!” will be
shown on the monitor.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on, open the serial monitor and set the baud rate to 9600. We
need to press the reset button on the ESP32, then the serial monitor will display the corresponding data and characters.
when the button is pressed, the red LED lights up and val is 1. Then the shell shows “Pressed the button!”; if the button
is released, the red LED is off and val is 0, “Loosen the button!” will be displayed.

666 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.9 Project 9: Obstacle Avoidance Sensor

Overview
In this kit, there is a Keyestudio obstacle avoidance sensor, which mainly uses an infrared emitting and a receiving tube.
In the experiment, we will determine whether there is an obstacle by reading the high and low level of the S terminal
on the sensor.

Working Principle
NE555 circuit provides IR signals with frequency to the emitter TX, then the IR signals will fade with the increase of
transmission distance. If encountering the obstacle, it will be reflected back.

When the receiver RX meets the weak signals reflected back, the receiving pin will output high levels, which indicates
the obstacle is far away. On the contrary, it the reflected signals are stronger, low levels will be output, which represents
the obstacle is close. There are 2 potentiometers on the sensor, and by adjusting the 2 potentiometers, we can adjust its
effective distance.

7.5. 5. Basic Projects 667

keyestudio WiKi

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIY Obstacle Avoidance Sen-
sor*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

668 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//
→˓***
/*
* Filename : Touch sensor
* Description : Reading touch value
* Auther : http://www.keyestudio.com
*/
int val = 0;
int touch = 15; //The key of PIN
void setup() {

Serial.begin(9600);//Baud rate is 9600
pinMode(touch, INPUT);//Setting input mode

}

void loop() {
val = digitalRead(touch);//Read the value of the key
Serial.print(val);//Print out key values
if (val == 1) {//Press for high level
Serial.print(" ");
Serial.println("Press the button");
delay(100);

}
else {//Release to low level

Serial.print(" ");
Serial.println("Loosen the button");
delay(100);

(continues on next page)

7.5. 5. Basic Projects 669

keyestudio WiKi

(continued from previous page)

}
}
//

→˓***

Code Explanation
Note:

Upload the test code and wire up according to the connection diagram. After powering on, we start to adjust the two
potentiometers to sense distance.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onopen the serial monitor and set the baud rate to 9600. We
need to press the reset button on the ESP32, then the serial monitor will display the corresponding data and characters.
When the sensor detects the obstacle, the val is 0,the monitor will show“There are obstacles”; if the obstacle is not
detected, the val is 1,“All going well” will be shown.

7.5.10 Project 10: Line Tracking Sensor

Description
In this kit, there is a DIY electronic building block single-channel line tracking sensor which mainly uses a TCRT5000
reflective black and white line recognition sensor element.

670 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

In the experiment, we judge the color (black and white) of the object detected by the sensor by reading the high and
low levels of the S terminal on the module; and display the test results on the shell.

Working Principle
When a black or no object is detected, the signal terminal will output high levels; when white object is detected, the
signal terminal is low level; its detection height is 0-3cm. We can adjust the sensitivity by rotating the potentiometer
on the sensor. When the potentiometer is rotated, the sensitivity is best when the red LED on the sensor is at the critical
point between off and on.

Required Components

7.5. 5. Basic Projects 671

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIY Line Tracking Sen-
sor*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

//***
/*
* Filename : line tracking

(continues on next page)

672 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

* Description : Reading the tracking sensor value
* Auther : http://www.keyestudio.com
*/
int val = 0;
void setup() {
Serial.begin(9600);//Set baud rate to 9600
pinMode(15, INPUT);//Sets sensor pin to input mode

}

void loop() {
val = digitalRead(15);//Read the digital level output by the patrol sensor
Serial.print(val);//Serial port print value
if (val == 0) {//White val is 0 detected
Serial.print(" ");
Serial.println("White");
delay(100);

}
else {//Black val is 1 detected

Serial.print(" ");
Serial.println("Black");
delay(100);

}
}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onopen the serial monitor and set the baud rate to 9600. We
need to press the reset button on the ESP32, then the serial monitor will display the corresponding data and characters.
when the sensor doesn’t detect an object or detects a black object, the val is 1, and the monitor will display “1 Black” ;
when a white object (can reflect light) is detected, the val is 0, and the monitor will display “0 White” ;

7.5. 5. Basic Projects 673

keyestudio WiKi

7.5.11 Project 11: Photo Interrupter

Description
This kit contains a photo interrupter which mainly uses 1 ITR-9608 photoelectric switch. It is a photoelectric switch
optical switch sensor.

Working Principle
When the paper is put in the slot, C is connected with VCC and the signal end S of the sensor are high levels; then the
red LED will be off. Otherwise, the red LED will be on.

Required Components

674 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Connection Diagram

7.5. 5. Basic Projects 675

keyestudio WiKi

Test Code

//***
/*
* Filename : Photo_Interrupt
* Description : Light snap sensor counting
* Auther : http://www.keyestudio.com
*/
int PushCounter = 0; //The count variable is assigned an initial value of 0
int State = 0; //Store the current state of the sensor output
int lastState = 0; //Stores the state of the last sensor output
void setup() {
Serial.begin(9600);//Set the baud rate to 9600
pinMode(15, INPUT);//Set the light snap sensor pin to input mode

}

void loop() {
State = digitalRead(15);//Read current state
if (State != lastState) {//If the state is different from the last read
if (State == 1) {//block the light
PushCounter = PushCounter + 1;//Count + 1
Serial.println(PushCounter);//Print count

}
}
lastState = State;//Update state

}
//***

676 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Code Explanation
Logic setting:

Initial Setting Set PushCounter to 0Set State to 0
(value of the sensor)Set lastState to 0

when an object enters
the slot

lastState is 0State turns into 1; lastState turns
into 1

Set PushCounter to Push-
Counter+1print the value of Push-
Counter

when the object leaves
the slot

lastState is 1State becomes 0two data are not
equallastState turns into 0.

PushCounterdoesn’t change;Don’t print
the value of PushCounter

When the object goes
through this slot again

lastState is 0, State becomes 1two data are not
equallastState turns into 1.

SetPushCounter to PushCounter+1.
And print the value of PushCounter

When the object leaves
this slot again

lastState is 1State turns into 0two data are not
equal lastState turns into 0

PushCounter doesn’t change;Don’t print
the PushCounter value

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onopen the serial monitor and set the baud rate to 9600. We
need to press the reset button on the ESP32, then the serial monitor will display the PushCounter data. Every time
when the object passes through the slot of the sensor, the PushCounter data will increase by 1 continuously, as shown
below;

7.5. 5. Basic Projects 677

keyestudio WiKi

7.5.12 Project 12: Tilt Module

Overview
In this kit, there is a Keyestudio tilt sensor. The tilt switch can output signals of different levels according to whether
the module is tilted. There is a ball inside. When the switch is higher than the horizontal level, the switch is turned on,
and when it is lower than the horizontal level, the switch is turned off. This tilt module can be used for tilt detection,
alarm or other detection.

Working Principle
The working principle is pretty simple. When pin 1 and 2 of the ball switch P1 are connected, the signal S is low level
and the red LED will light up; when they are disconnected, the pin will be pulled up by the 4.7K R1 and make S a high
level, then LED will be off.

Components

678 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 KeyestudioTilt Sensor*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

//***
/*
* Filename : Tilt switch

(continues on next page)

7.5. 5. Basic Projects 679

keyestudio WiKi

(continued from previous page)

* Description : Reading the tilt sensor value
* Auther :http://www.keyestudio.com
*/
int val; //Store the level value output by the tilt sensor

void setup() {
Serial.begin(9600);
pinMode(15, INPUT); //Connect the pin of the tilt sensor to GP15 and set GP15 to the␣

→˓input mode
}

void loop() {
val = digitalRead(15); //Read module level signal
Serial.println(val); //Newline print
delay(100); //Delay for 100 ms

}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on, open the serial monitor and set the baud rate to 9600. We
need to press the reset button on the ESP32, then make the tilt module incline to one side, the red LED on the module
will be off and the monitor will display “1”. In contrast, if you make it incline the other side, the red LED will light up
and the monitor will display “0”.

680 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.13 Project 13: Collision Sensor

Description
The collision sensor uses a tact switch. This sensor is often used as a limit switch in 3D printers. In the experiment, we
judge whether the sensor shrapnel is pressed down by reading the high and low levels of the S terminal on the module;
and, we display the test results in the shell.

Working Principle
It mainly uses a tact switch. When the shrapnel of the tact switch is pressed, 2 and 3 are connected, the signal terminal S
is low level, and the red LED on the module lights up; when the touch switch is not pressed, 2 and 3 are not connected,
and 3 is pulled up to a high level by the 4.7K resistor R1, that is, the sensor signal terminal S is a high level, and the
built-in red LED will be off at this time.

Components Required

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Collision Sensor*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

7.5. 5. Basic Projects 681

keyestudio WiKi

Test Code

//***
/*
* Filename : collision sensor
* Description : Reading the value of the collision sensor
* Auther : http://www.keyestudio.com
*/
int val = 0;
void setup() {
Serial.begin(9600);//Set baud rate to 9600
pinMode(15, INPUT);//Set collision sensor pin 15 to input mode

}

void loop() {
val = digitalRead(15);//Read the value of the collision sensor
Serial.print(val);//Newline print
if (val == 0) {//Collision val is 0
Serial.print(" ");
Serial.println("The end of his!");
delay(100);

}
else {// No collision val is 1

Serial.print(" ");
Serial.println("All going well");
delay(100);

}
(continues on next page)

682 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on, open the serial monitor and set the baud rate to 9600. We
need to press the reset button on the ESP32, then the serial monitor will display the corresponding data and characters.

In the experiment, when the shrapnel on the sensor is pressed down, val is 0, the red LED of the module is on, and “0
The end of his!” is printed; when the shrapnel is released, the val is 1, the red LED of the module is off, and “1 All
going well” is printed. “!” character, as shown below.

7.5. 5. Basic Projects 683

keyestudio WiKi

7.5.14 Project 14: Hall Sensor

Description
In this kit, there is a Hall sensor which mainly adopts a A3144 linear Hall element. The element P1 is composed of
a voltage regulator, a Hall voltage generator, a differential amplifier, a Schmitt trigger, a temperature compensation
circuit and an open-collector output stage. In the experiment, we use the Hall sensor to detect the magnetic field and
display the test results on the shell.

Working Principle
When the sensor detects no magnetic field or a north pole magnetic field, the signal terminal will be high level; when
it senses a south pole magnetic field, the signal terminal will be low levels. The stronger the magnetic field strength is,
induction distance is longer.

Required Components

684 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIY Hall Sensor*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

//***
/*
* Filename : Hall magnetic

(continues on next page)

7.5. 5. Basic Projects 685

keyestudio WiKi

(continued from previous page)

* Description : Reading the value of hall magnetic sensor
* Auther : http://www.keyestudio.com
*/
int val = 0;
int hallPin = 15; //Hall sensor pin is connected to GPIO15
void setup() {
Serial.begin(9600);//Set baud rate to 9600
pinMode(hallPin, INPUT);//Set pin to input mode

}

void loop() {
val = digitalRead(hallPin);//Read the level value of hall sensor
Serial.print(val);//Print val
if (val == 0) {//There is a South Pole magnetic field
Serial.println(" The magnetic field at the South Pole!");

}
else {//If not

Serial.println(" Just be all normal!");
}

}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on, open the serial monitor and set the baud rate to 9600.
We need to press the reset button on the ESP32, when the sensor detects no magnetic fields or the north pole magnetic
field, the monitor l will show“1 Just be all normal!”and the LED on the sensor will be off; When it detects the south
pole magnetic field,“0 The magnetic field at the South Pole!”and the LED on the sensor will be on.

686 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.15 Project 15: Reed Switch Module

Overview
In this kit, there is a Keyestudio reed switch module, which mainly uses a MKA10110 green reed component.

The reed switch is the abbreviation of the dry reed switch. It is a passive electronic switch element with contacts.

It has the advantages of simple structure, small size and easy control.

Its shell is a sealed glass tube with two iron elastic reed electric plates.

In the experiment, we will determine whether there is a magnetic field near the module by reading the high and low
level of the S terminal on the module; and, we display the test result in the shell.

Working Principle
In normal conditions, the glass tube in the two reeds made of special materials are separated. When a magnetic sub-
stance close to the glass tube, in the role of the magnetic field lines, the pipe within the two reeds are magnetized to
attract each other in contact, the reed will suck together, so that the junction point of the connected circuit communi-
cation.

After the disappearance of the outer magnetic reed because of their flexibility and separate, the line is disconnected.
The sensor uses this characteristic to build a circuit to convert magnetic field signal into high and low level signal.

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIY Reed Switch Mod-
ule*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

7.5. 5. Basic Projects 687

keyestudio WiKi

Test Code

//***
/*
* Filename : Reed Switch
* Description : Read the value of the reed sensor
* Auther : http://www.keyestudio.com
*/
int val = 0;
int reedPin = 15; //Define dry reed module signal pin connected to GPIO15
void setup() {
Serial.begin(9600);//Set baud rate to 9600
pinMode(reedPin, INPUT);//Set mode to input

}

void loop() {
val = digitalRead(reedPin);//Read digital level
Serial.print(val);//Serial port shows up

if (val == 0) {//There's a magnetic field nearby
Serial.print(" ");
Serial.println("A magnetic field");
delay(100);

}
else {//There is no magnetic field

Serial.print(" ");
Serial.println("There is no magnetic field");

(continues on next page)

688 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

delay(100);
}

}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onopen the serial monitor and set the baud rate to 9600. We
need to press the reset button on the ESP32, then the serial monitor will display the corresponding data and characters.

When the sensor detects a magnetic field, val is 0 and the red LED of the module lights up, “0 A magnetic field” will be
displayed; when no magnetic field is detected, val is 1, and the LED on the module goes out, “1 There is no magnetic
field” will be shown, as shown below.

7.5.16 Project 16: PIR Motion Sensor

Overview
In this kit, there is a Keyestudio PIR motion sensor, which mainly uses an RE200B-P sensor elements. It is a human

7.5. 5. Basic Projects 689

keyestudio WiKi

body pyroelectric motion sensor based on pyroelectric effect, which can detect infrared rays emitted by humans or
animals, and the Fresnel lens can make the sensor’s detection range farther and wider.

In the experiment, we determine if there is someone moving nearby by reading the high and low levels of the S terminal
on the module. The detected results will be displayed on the Shell.

Working Principle
The upper left part is voltage conversion(VCC to 3.3V). The working voltage of sensors we use is 3.3V, therefore we
can’t use 5V directly. The voltage conversion circuit is needed.

When no person is detected or no infrared signal is received, and pin 1 of the sensor outputs low level. At this time,
the LED on the module will light up and the MOS tube Q1 will be connected and the signal terminal S will detect Low
levels.

When one is detected or an infrared signal is received, and pin 1 of the sensor outputs a high level. Then LED on the
module will go off, the MOS tube Q1 is disconnected and the signal terminal S will detect high levels.

Required Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIY PIR Motion Sensor*1

3P Dupont Wire*1 Micro USB Cable*1

690 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Connection Diagram

Test Code

//***
/*
* Filename : PIR motion
* Description : Reading the value of the human body infrared sensor
* Auther : http://www.keyestudio.com
*/
int val = 0;
int pirPin = 15; //The pin of PIR motion sensor is defined as GPIO15
void setup() {
Serial.begin(9600); //Set baud rate to 9600
pinMode(pirPin, INPUT); //Set the sensor to input mode

}

void loop() {
val = digitalRead(pirPin); //Read the sensor value
Serial.print(val);//Print val value
if (val == 1) {//There is movement nearby, output high level
Serial.print(" ");
Serial.println("Some body is in this area!");
delay(100);

}
else {//If no movement nearby, output low level

Serial.print(" ");
Serial.println("No one!");

(continues on next page)

7.5. 5. Basic Projects 691

keyestudio WiKi

(continued from previous page)

delay(100);
}

}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on, open the serial monitor and set the baud rate to 9600. We
need to press the reset button on the ESP32, then the serial monitor will display the corresponding data and characters.

When the sensor detects someone nearby, value is 1, the LED will go off and the monitor will show “1 Somebody is in
this area!”. In contrast, the value is 0, the LED will go up and “0 No one!” will be shown.

7.5.17 Project 17: Active Buzzer

Overview

692 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

In this kit, it contains an active buzzer module and a power amplifier module (the principle is equivalent to a passive
buzzer).

In this experiment, we control the active buzzer to emit sounds. Since it has its own oscillating circuit, the buzzer will
automatically sound if given large voltage.

Working Principle
From the schematic diagram, the pin of buzzer is connected to a resistor R2 and another port is linked with a NPN
triode Q1. So, if this triode Q1 is powered, the buzzer will sound.

If the base electrode of the triode connected to the R1 resistor is a high level, the triode Q1 will be connected.If the
base electrode is pulled down by the resistor R3, the triode is disconnected.

When we output a high level from the IO port to the triode, the buzzer will emit sounds; if outputting low levels, the
buzzer won’t emit sounds.

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Active Buzzer*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

7.5. 5. Basic Projects 693

keyestudio WiKi

Test Code

//***
/*
* Filename : Active buzzer
* Description : An active buzzer produces sound
* Auther : http://www.keyestudio.com
*/
int buzzer = 15; //Define buzzer receiver pin GPIO15
void setup() {
pinMode(buzzer, OUTPUT);//Set the output mode

}

void loop() {
digitalWrite(buzzer, HIGH); //sound production
delay(1000);
digitalWrite(buzzer, LOW); //Stop the sound
delay(1000);

}
//***

Code Explanation
In the experiment, we set the pin to GPIO15. When setting to high, the active buzzer will beep; when setting to low,
the active buzzer will stop emitting sounds.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. The active buzzer will emit sound for 1 second, and stop
for 1 second.

694 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.18 Project 18: 8002b Audio Power Amplifier

Overview
In this kit, there is a Keyestudio 8002b audio power amplifier. The main components of this module are an adjustable
potentiometer, a speaker, and an audio amplifier chip;

The main function of this module is: it can amplify the output audio signal, with a magnification of 8.5 times, and
play sound or music through the built-in low-power speaker, as an external amplifying device for some music playing
equipment.

In the experiment, we used the 8002b power amplifier speaker module to emit sounds of various frequencies.

Working Principle
In fact, it is similar to a passive buzzer. The active buzzer has its own oscillation source.Yet, the passive buzzer does
not have internal oscillation. When controlling the circuit, we need to input square waves of different frequencies to
the positive pole of the component and ground the negative pole to control the buzzer to chime sounds of different
frequencies.

7.5. 5. Basic Projects 695

keyestudio WiKi

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio 8002b Audio Power Ampli-
fier*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

696 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

//**
/*
* Filename : Passive Buzzer
* Description : Passive Buzzer sounds the alarm.
* Auther : http//www.keyestudio.com
*/
#define LEDC_CHANNEL_0 0

// LEDC timer uses 13 bit accuracy
#define LEDC_TIMER_13_BIT 13

// Define tool I/O ports
#define BUZZER_PIN 15

//Create a musical melody list, Super Mario
int melody[] = {330, 330, 330, 262, 330, 392, 196, 262, 196, 165, 220, 247, 233, 220,␣
→˓196, 330, 392, 440, 349, 392, 330, 262, 294, 247, 262, 196, 165, 220, 247, 233, 220,␣
→˓196, 330, 392,440, 349, 392, 330, 262, 294, 247, 392, 370, 330, 311, 330, 208, 220,␣
→˓262, 220, 262, 294, 392, 370, 330, 311, 330, 523, 523, 523, 392, 370, 330, 311, 330,␣
→˓208, 220, 262,220, 262, 294, 311, 294, 262, 262, 262, 262, 262, 294, 330, 262, 220,␣
→˓196, 262, 262,262, 262, 294, 330, 262, 262, 262, 262, 294, 330, 262, 220, 196};

//Create a list of tone durations
int noteDurations[] = {8,4,4,8,4,2,2,3,3,3,4,4,8,4,8,8,8,4,8,4,3,8,8,3,3,3,3,4,4,8,4,8,8,
→˓8,4,8,4,3,8,8,2,8,8,8,4,4,8,8,4,8,8,3,8,8,8,4,4,4,8,2,8,8,8,4,4,8,8,4,8,8,3,3,3,1,8,4,
→˓4,8,4,8,4,8,2,8,4,4,8,4,1,8,4,4,8,4,8,4,8,2};
void setup() {
pinMode(BUZZER_PIN, OUTPUT); // Set the buzzer to output mode
}

void loop() {

int noteDuration; //Create a variable of noteDuration

for (int i = 0; i < sizeof(noteDurations); ++i)

{
noteDuration = 800/noteDurations[i];

ledcSetup(LEDC_CHANNEL_0, melody[i]*2, LEDC_TIMER_13_BIT);

ledcAttachPin(BUZZER_PIN, LEDC_CHANNEL_0);

ledcWrite(LEDC_CHANNEL_0, 50);

delay(noteDuration * 1.30); //delay
}

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power onthen the power amplifier module will emit the sound on a

7.5. 5. Basic Projects 697

keyestudio WiKi

loop.

7.5.19 Project 19: 130 Motor

Description
The 130 motor driver module is compatible with servo motors, which has high efficiency and good quality fans.

It adopts a HR1124S motor control chip. HR1124S is a single-channel H-bridge driver chip for DC motor solutions.
In addition, this chip has low standby current and low quiescent current.

The module is compatible with various single-chip control boards. In the experiment, we can control the rotation
direction of the motor by outputting the voltage directions of the two signal terminals IN+ and IN- to make the motor
rotate.

Working Principle
The chip is used to help drive the motor. We can’t drive it with a triode or an IO port due to its a large current of need.
It is very simple to make the motor rotate. Just apply voltage to both ends of the motor. The direction of the motor is
different in different voltage directions. Within the rated voltage, the higher the voltage, the faster the motor rotates; on
the contrary, the lower the voltage, the slower the motor rotates, or even unable to rotate.

So we can use the PWM port to control the speed of the motor. We haven’t learned PWM here, so we use the high and
low levels to control the motor first.

Required Components

698 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion
Board*1

keyestudio DIY 130 Mo-
tor*1

4P Dupont Wire*1

Micro USB Cable*1 Battety Holder*1 Battety (provide for your-
self)*6

Note: the motor is separated with its fan, you need to assemble it first.

Connection Diagram

130 Motor ESP32 Expansion Board
G G
V 5V
IN+ IO15
IN- IO4

Test Code

//***
/*
* Filename : 130DC Fan motor
* Description : Motor positive and negative rotation

(continues on next page)

7.5. 5. Basic Projects 699

keyestudio WiKi

(continued from previous page)

* Auther : http://www.keyestudio.com
*/
//Define two pins interfaces of the motor, respectively 15 and 4
int INA = 15; //INA corresponds to IN+
int INB = 4; //INB corresponds to IN-
void setup() {
//Set the motor pins as output
pinMode(INA, OUTPUT);
pinMode(INB, OUTPUT);

}

void loop() {
//Turn counterclockwise
digitalWrite(INA, HIGH);
digitalWrite(INB, LOW);
delay(2000);
//stop
digitalWrite(INA, LOW);
digitalWrite(INB, LOW);
delay(1000);
//clockwise rotation
digitalWrite(INA, LOW);
digitalWrite(INB, HIGH);
delay(2000);
//stop
digitalWrite(INA, LOW);
digitalWrite(INB, LOW);
delay(1000);

}
//***

Code Explanation
Set pins to GPIO4GPIO15, when the pin GPIO4 outputs low levels and the pin GPIO15 outputs high levels, the motor
will rotate counterclockwise; when both pins are set to low, the motor stops rotating.

Test Result
Connect the wires according to the experimental wiring diagram and power on. Switch the DIP switch ON the ESP32
expansion board to the ON end, after powering on, compile and upload the code to the ESP32. After uploading
successfullythe fan will rotate counterclockwise for 2 seconds, stop for 1 second and clockwise for 2 seconds and
stop for 1 second; cycle alternately.

7.5.20 Project 20: Potentiometer

Overview

700 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

The following we will introduce is the Keyestudio rotary potentiometer which is an analog sensor.

The digital IO ports can read the voltage value between 0 and 3.3V and the module only outputs high levels. However,
the analog sensor can read the voltage value through 16 ADC analog ports on the ESP32 board. In the experiment, we
will display the test results on the Shell.

Working Principle

It uses a 10K adjustable resistor. We can change the resistance by rotating the potentiometer. The signal S can detect
the voltage changes(0-3.3V) which are analog quantity.

ADC The more bits an ADC has, the denser the partitioning of the simulation, the higher the accuracy of the final
conversion.

Section 1: 0V – 3.3/4095 V analog quantity corresponding to digital 0;

Section 2: Analog quantities in the range 3.3/4095V – 2* 3.3/4095V correspond to digital 1;

. . .

The conversion formula is as follows:

DAC The higher the precision of DAC, the higher the precision of the output voltage value.

The conversion formula is as follows:

7.5. 5. Basic Projects 701

keyestudio WiKi

ADC on ESP32
The ESP32 has 16 pins that can be used to measure analog signals. GPIO pin serial numbers and analog pin definitions
are shown below:

ADC number in ESP32 ESP32 GPIO number
ADC0 GPIO 36
ADC3 GPIO 39
ADC4 GPIO 32
ADC5 GPIO33
ADC6 GPIO34
ADC7 GPIO 35
ADC10 GPIO 4
ADC11 GPIO0
ADC12 GPIO2
ADC13 GPIO15
ADC14 GPIO13
ADC15 GPIO 12
ADC16 GPIO 14
ADC17 GPIO27
ADC18 GPIO25
ADC19 GPIO26

DAC on ESP32
The ESP32 has two 8-bit digital-to-analog converters connected to GPIO25 and GPIO26 pins, which are immutable,
as shown below :

Simulate pin number GPIO number
DAC1 GPIO25
DAC2 GPIO26

Components

702 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Rotary Potentiometer*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

//**
/*
* Filename : Rotary_potentiometer
* Description : Read the basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/

(continues on next page)

7.5. 5. Basic Projects 703

keyestudio WiKi

(continued from previous page)

#define PIN_ANALOG_IN 34 //the pin of the Potentiometer

void setup() {
Serial.begin(9600);

}

//In loop()the analogRead() function is used to obtain the ADC value,
//and then the map() function is used to convert the value into an 8-bit precision DAC␣
→˓value.
//The input and output voltage are calculated according to the previous formula,
//and the information is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Code Explanation
1). analogVal means analog value. The rotary potentiometer outputs analog values(0~4095), therefore, we set pins to
analog ports. For example, we connect to GPIO34.

2). analogRead(pin): read the value of the specified analog pin. The ESP32 contains a multi-channel, 12-bit converter.
This means that it will map the input voltage between 0 and the working voltage (5V or 3.3V) to an integer value
between 0 and 4095. For example, this will produce a resolution among readings: 3.3V/4096 stands for 0.0008V per
unit.

3). The map() function converts this 12-bit DAC value to an 8-bit DAC value.

4). Pin: the name of analog input pin.

5). The serial monitor displays the values of adcVal, dacVal, voltage, the baud rate must be set before display (we
default to 9600,which can be changed).

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on, open the serial monitor and set the baud rate to 9600.
We need to press the reset button on the ESP32, then the serial monitor will display the potentiometer’s ADC value,
DAC value and voltage value. Rotate the potentiometer handle, the analog values will change.

704 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.21 Project 21: Steam Sensor

Description
This is a DIY electronic building block water drop sensor. It is an analog (digital) input module, also called rain,
rain sensor. It can be used to monitor various weather conditions, detect whether it is raining and the amount of rain,
convert it into digital signal (DO) and analog signal (AO) output, and is widely used in Arduino robot kits, raindrops,
rain sensors, and can be used for various It can monitor various weather conditions, and convert it into digital signal
and AO output, and can also be used for automobile automatic wiper system, intelligent lighting system and intelligent
sunroof system.

In the experiment, we input the sensor signal terminal (S terminal) to the analog port of the ESP32 development board,
sense the change of the analog value, and display the corresponding analog value on the shell.

Working Principle

7.5. 5. Basic Projects 705

keyestudio WiKi

Its principle is to detect the amount of water through the exposed printed parallel lines on the circuit board. The more
water there is, the more wires will be connected, and the conductive contact area increases. The voltage output by pin
2 will gradually increase. The larger the analog value detected by the signal terminal S is.

It can also detect steam in the air. Two position holes are used to install on the other devices.

Required Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIY Steam Sensor *1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

706 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : Steam sensor
* Description : Read the basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 34 //the pin of the Steam sensor

void setup() {
Serial.begin(9600);

}

//In loop()the analogRead() function is used to obtain the ADC value, and then the map()␣
→˓function is used to convert the value into an 8-bit precision DAC value.
//The input and output voltage are calculated according to the previous formula, and the␣
→˓information is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on, open the serial monitor and set the baud rate to 9600. We

7.5. 5. Basic Projects 707

keyestudio WiKi

need to press the reset button on the ESP32, then the serial monitor will display the steam sensor’s ADC value, DAC
value and voltage value. When a few drops of water are placed in the sensor sensing area, the values will change. The
more water volume, the greater the output voltage value , ADC value and the DAC value .

7.5.22 Project 22: Sound Sensor

Overview
In this kit, there is a Keyestudio DIY electronic block and a sound sensor. In the experiment, we test the analog value
corresponding to the sound level in the current environment with it. The louder the sound, the larger the ADC, DAC
and the voltage value, and the “shell” window will display the test results.

Working Principle
It uses a high-sensitive microphone component and an LM386 chip. We build the circuit with the LM386 chip and

708 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

amplify the sound through the high-sensitive microphone. In addition, we can adjust the sound volume by the poten-
tiometer. Rotate it clockwise, the sound will get louder.

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIY Sound Sensor*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

7.5. 5. Basic Projects 709

keyestudio WiKi

Test Code

//**
/*
* Filename : MicroPhone
* Description : Read the basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 34 //the pin of the Sound Sensor

void setup() {
Serial.begin(9600);

}

//In loop()the analogRead() function is used to obtain the ADC value,
//and then the map() function is used to convert the value into an 8-bit precision DAC␣
→˓value.
//The input and output voltage are calculated according to the previous formula,
//and the information is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Test Result

710 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on, open the serial monitor and set the baud rate to 9600. We
need to press the reset button on the ESP32, then the serial monitor will display the sound sensor’s ADC value, DAC
value and voltage value. Rotate clockwise the potentiometer and speak at the MIC. Then you can see the analog value
get larger, as shown below:

7.5.23 Project 23: Photoresistor

Description
In this kit, there is a photoresistor which consists of photosensitive resistance elements. Its resistance changes with the
light intensity. Also, it converts the resistance change into a voltage change through the characteristic of the photosen-

7.5. 5. Basic Projects 711

keyestudio WiKi

sitive resistive element. When wiring it up, we interface its signal terminal (S terminal) with the analog port of ESP32
, so as to sense the change of the analog value, and display the corresponding analog value in the shell.

Working Principle
If there is no light, the resistance is 0.2M and the detected voltage at the terminal 2 is close to 0. When the light intensity
increases, the resistance value of the light sensor is getting smaller and smaller, so the voltage detected at the signal
end is getting larger and larger. . .

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIY Photoresistor*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

712 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : Photoresistance
* Description : Read the basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 34 //the pin of the Photoresistance

void setup() {
Serial.begin(9600);

}

//In loop()the analogRead() function is used to obtain the ADC value, and then the map()␣
→˓function is used to convert the value into an 8-bit precision DAC value.
//The input and output voltage are calculated according to the previous formula, and the␣
→˓information is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After

7.5. 5. Basic Projects 713

keyestudio WiKi

uploading successfullywe will use a USB cable to power on, open the serial monitor and set the baud rate to 9600. We
need to press the reset button on the ESP32, then the serial monitor will display the photoresistor’s ADC value, DAC
value and voltage value. When the light intensity gets stronger, the analog values will get larger, as shown below:

714 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.24 Project 24: NTC-MF52AT Thermistor

Overview
In the experiment, there is a NTC-MF52AT analog thermistor. We connect its signal terminal to the analog port of the
ESP32 mainboard and read the corresponding ADC value, voltage value and thermistor value.

We can use analog values to calculate the temperature of the current environment through specific formulas. Since the
temperature calculation formula is more complicated, we only read the corresponding analog value.

Working Principle

7.5. 5. Basic Projects 715

keyestudio WiKi

This module mainly uses NTC-MF52AT thermistor element, which can sense the changes of the surrounding environ-
ment temperature. Resistance changes with the temperature, causing the voltage of the signal terminal S to change.

This sensor uses the characteristics of NTC-MF52AT thermistor element to convert resistance changes into voltage
changes.

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio NTC-MF52AT Thermis-
tor*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

716 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : Temperature sensor
* Description : Making a thermometer by thermistor.
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 34
void setup() {
Serial.begin(9600);

}

void loop() {
int adcValue = analogRead(PIN_ANALOG_IN); //read ADC pin
double voltage = (float)adcValue / 4095.0 * 3.3; // calculate voltage
double Rt = (3.3 - voltage) / voltage * 4.7; //calculate␣

→˓resistance value of thermistor
double tempK = 1 / (1 / (273.15 + 25) + log(Rt / 10) / 3950.0); //calculate␣

→˓temperature (Kelvin)
double tempC = tempK - 273.15; //calculate␣

→˓temperature (Celsius)
Serial.printf("ADC value : %d,\tVoltage : %.2fV, \tTemperature : %.2fC\n", adcValue,␣

→˓voltage, tempC);
delay(1000);

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After

7.5. 5. Basic Projects 717

keyestudio WiKi

uploading successfully, we will use a USB cable to power on, open the serial monitor and set the baud rate to 9600.
We need to press the reset button on the ESP32, then the serial monitor will display the thermistor’s ADC value, DAC
value and voltage value, as shown below:

7.5.25 Project 25: Thin-film Pressure Sensor

Overview
In this kit, there is a Keyestudio thin-film pressure sensor. The thin-film pressure sensor composed of a new type
of nano pressure-sensitive material and a comfortable ultra-thin film substrate, has waterproof and pressure-sensitive
functions.

In the experiment, we determine the pressure by collecting the analog signal on the S end of the module. The smaller
the ADC value, DAC value and voltage value, the greater the pressure; and the displayed results will shown on the
Shell.

Working Principle

718 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

When the sensor is pressed by external forces, the resistance value of sensor will vary. We convert the pressure signals
detected by the sensor into the electric signals through a circuit. Then we can obtain the pressure changes by detecting
voltage signal changes.

Components

ESP32 Board*1 ESP32 Expansion Board*1 KeyestudioThin-film Pressure Sensor*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

7.5. 5. Basic Projects 719

keyestudio WiKi

Test Code

//**
/*
* Filename : Film pressure sensor
* Description : Read the basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 34 //the pin of the Film pressure sensor
void setup() {
Serial.begin(9600);

}

//In loop()the analogRead() function is used to obtain the ADC value, and then the map()␣
→˓function is used to convert the value into an 8-bit precision DAC value.
//The input and output voltage are calculated according to the previous formula, and the␣
→˓information is finally printed out.

(continues on next page)

720 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on, open the serial monitor and set the baud rate to 9600. We
need to press the reset button on the ESP32, then the serial monitor will display the thin-film’s ADC value, DAC value
and voltage value, when the thin-film is pressed by fingers, the analog value will decrease, as shown below;

7.5.26 Project 26: Flame Sensor

Description
In daily life, it is often seen that a fire broke out without any precaution. It will cause great economic and human loss.
So how can we avoid this situation? Right, install a flame sensor and a speaker in those places that easily break out a
fire. When the flame sensor detects a fire, the speaker will alarm people quickly to put out the fire.

7.5. 5. Basic Projects 721

keyestudio WiKi

So in this project, you will learn how to use a flame sensor and an active buzzer module to simulate the fire alarm
system.

Working Principle
This flame sensor can be used to detect fire or other light sources with wavelength stands at 700nm ~ 1000nm. Its
detection angle is about 60°. You can rotate the potentiometer on the sensor to control its sensitivity. Adjust the
potentiometer to make the LED at the critical point between on and off state. The sensitivity is the best.

From the below figure, power up. When detecting fire, the digital pin outputs low levels, the red LED2 will light up first,
the digital signal terminal D0 outputs a low level, and the red LED1 will light up. The stronger the external infrared
light, the smaller the value; the weaker the infrared light, the larger the value.

Required Components

722 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 keyestudio DIY Flame Sensor*1

4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

//**
/*
* Filename : Flame sensor
* Description : Read the basic usage of DigitalADCDAC and Voltage
* Auther : http//www.keyestudio.com

(continues on next page)

7.5. 5. Basic Projects 723

keyestudio WiKi

(continued from previous page)

*/
//Flame sensor two pins 13, 34, respectively
#define PIN_ANALOG_IN 34
int digitalPin = 13;

//The following two variables hold the digital signal and adc values respectively
int analogVal = 0;
int adcVal = 0;

void setup() {
Serial.begin(9600);
pinMode(digitalPin, INPUT); //Digital pin 13 is set to input mode

}

//In loop()the digitalRead()function is used to obtain the digital value,
//the analogRead() function is used to obtain the ADC value.
//and then the map() function is used to convert the value into an 8-bit precision DAC␣
→˓value.
//The input and output voltage are calculated according to the previous formula,
//and the information is finally printed out.
void loop() {
int digitalVal = digitalRead(digitalPin); //Read digital signal;
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("digitalVal: %d, \t ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n",

→˓digitalVal, adcVal, dacVal, voltage);
delay(200);

}
//**

Code Explanation
Two pins we use are defined as GPIO13 and GPIO34 according to the wiring-up diagram, and print digital signals and
analog signals respectively.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Rotating the potentiometer on the sensor, we can adjust
the red LED bright and not bright critical point. The red LED2 on the sensor module is lit, while the red LED1 is not.
Open the monitor and set baud rate to 9600.

We need to press the reset button on the ESP32, then the “Shell” window will display the digital value, ADC value,
DAC value and voltage value of the flame sensor. When fire is detected, the LED1 will be on. the digital value will
change from 1 to 0, and the analog value will become smaller, as shown below.

724 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.27 Project 27: MQ-2 Gas Sensor

Description
This analog gas sensor - MQ2 is used in gas leakage detecting equipment in consumer electronics and industrial markets.

This sensor is suitable for detecting LPG, I-butane, propane, methane, alcohol, Hydrogen and smoke. It has high
sensitivity and quick response.

In addition, the sensitivity can be adjusted by rotating the potentiometer.

In the experiment, we read the analog value at the A0 port and the D0 port to determine the content of gas.

Working Principle
The greater the concentration of smoke, the greater the conductivity, the lower the output resistance, the greater the
output analog signal.

When in use, the A0 terminal reads the analog value of the corresponding gas; the D0 terminal is connected to an
LM393 chip (voltage comparator), we can adjust the alarm threshold of the measured gas through the potentiometer,
and output the digital value at D0. When the measured gas content exceeds the critical point, the D0 terminal outputs
a low level; when the measured gas content does not exceed the critical point, the D0 terminal outputs a high level.

7.5. 5. Basic Projects 725

keyestudio WiKi

Required Components

ESP32 Board*1 ESP32 Expansion Board*1 keyestudio DIY Analog Gas Sensor*1

4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

726 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : MQ2
* Description : Read the basic usage of Digital, ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
//MQ_2 two pins 13, 34, respectively
#define PIN_ANALOG_IN 34
int digitalPin = 13;

//The following two variables hold the digital signal and adc values respectively
int analogVal = 0;
int adcVal = 0;

void setup() {
Serial.begin(9600);
pinMode(digitalPin, INPUT); //Digital pin 13 is set to input mode

}

//In loop()the digitalRead()function is used to obtain the digital value, the␣
→˓analogRead() function is used to obtain the ADC value. and then the map() function is␣
→˓used to convert the value into an 8-bit precision DAC value.
//The input and output voltage are calculated according to the previous formula, and the␣
→˓information is finally printed out.

(continues on next page)

7.5. 5. Basic Projects 727

keyestudio WiKi

(continued from previous page)

void loop() {
int digitalVal = digitalRead(digitalPin); //Read digital signal;
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("digitalVal: %d, \t ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n",

→˓digitalVal, adcVal, dacVal, voltage);
if (digitalVal == 1) {
Serial.println(" Normal");

}
else {
Serial.println(" Exceeding");

}
delay(100); //Delay time 100 ms

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Rotating the potentiometer on the sensor, we can adjust
the red LED bright and not bright critical point. Open the monitor , set baud rate to 9600.

We need to press the reset button on the ESP32, then the monitor displays the corresponding data and characters. When
the sensor detects the smoke or combustible gas, the red LED lights up and the digital value changes from 1 to 0, the
ADC value, DAC value and voltage value increase, as shown below.

728 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.28 Project 28: MQ-3 Alcohol Sensor

Description
In this kit, there is a MQ-3 alcohol sensor, which uses the gas-sensing material is tin dioxide (SnO2) which has a low
conductivity in clean air. When there is alcohol vapor in the environment where the sensor is located, the conductivity
of the sensor increases with the increase of the alcohol gas concentration in the air. The change in conductivity can be
converted into an output signal corresponding to the gas concentration using a simple circuit.

In the experiment, we read the analog value at the A0 end of the sensor and the digital value at the D0 end to judge the
content of alcohol vapor in the air and whether they exceed the standard.

Working Principle
At a certain temperature, the conductivity changes with the composition of the ambient gas. When in use, A0 terminal
reads the analog value corresponding to alcohol vapor; D0 terminal is connected to an LM393 chip (comparator), we
can adjust and measure the alcohol vapor alarm threshold through the potentiometer, and output the digital value at
D0. When the measured alcohol vapor content exceeds the critical point, the D0 terminal outputs a low level; when the
measured alcohol vapor content does not exceed the critical point, the D0 terminal outputs a high level.

7.5. 5. Basic Projects 729

keyestudio WiKi

Components Required

ESP32 Board*1 ESP32 Expansion Board*1 keyestudio Alcohol Sensor*1

4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

730 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : MQ3
* Description : Read the basic usage of Digital, ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
//MQ_3 two pins 13, 34, respectively
#define PIN_ANALOG_IN 34
int digitalPin = 13;

//The following two variables hold the digital signal and adc values respectively
int analogVal = 0;
int adcVal = 0;

void setup() {
Serial.begin(9600);
pinMode(digitalPin, INPUT); //Digital pin 13 is set to input mode

}

//In loop()the digitalRead()function is used to obtain the digital value, the␣
→˓analogRead() function is used to obtain the ADC value. and then the map() function is␣
→˓used to convert the value into an 8-bit precision DAC value.
//The input and output voltage are calculated according to the previous formula, and the␣
→˓information is finally printed out.

(continues on next page)

7.5. 5. Basic Projects 731

keyestudio WiKi

(continued from previous page)

void loop() {
int digitalVal = digitalRead(digitalPin); //Read digital signal;
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("digitalVal: %d, \t ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n",

→˓digitalVal, adcVal, dacVal, voltage);
if (digitalVal == 1) {
Serial.println(" Normal");

}
else {
Serial.println(" Exceeding");

}
delay(100); //Delay time 100 ms

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Rotating the potentiometer on the sensor, we can adjust
the yellow and green LED bright and not bright critical point. Open the monitor, set baud rate to 9600.

We need to press the reset button on the ESP32, then the monitor displays the corresponding data and characters. When
the sensor detects the alcohol gas, the yellow and green LED lights up and the digital value changes from 1 to 0, the
ADC value, DAC value and voltage value decrease, as shown below.

732 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.29 Project 29: Five-key AD Button Module

Description
When we talked about analog and digital sensors earlier, we talked about the single-channel key module. When we
press the key, it outputs a low level, and when we release the key, it outputs a high level. We can only read these two
digital signals. In fact, the key module ADC acquisition can also be performed. In this kit, a DIY electronic building
block five-way AD button module is included.

We can judge which key is pressed through the analog value. In the experiment, we print out the key press information
in the shell.

Working Principle
Let’s look at the schematic diagram, when we do not press the key, the OUT of S output to the signal end is pulled down
by R1. At this time, we read the low level 0V. When we press the key SW1, the OUT of the output to the signal end S is
directly connected to the VCC. At this time, we read the high level 3.3V(the figure is marked as a 12-bit ADC(0~4095)
and VCC is 5V. The principle is the same. Here we have VCC of 3.3V and ADC mapped to 12 bits), which is an analog
value of 4095.

Next,when we press the key SW2, the OUT terminal voltage of the signal we read is the voltage between R2 and R1,
namely VCC*R1/(R2+R1), which is about 2.64V, and the analog value is about 3276.

When we press the key SW3, the OUT terminal voltage of the signal we read is the voltage between R2+R3 and R1,
namely VCC*R1/(R3+R2+R1), which is about 1.99V, and the analog value is about 2469.

When we press the key SW4, the OUT terminal voltage of the signal we read is the voltage between R2+R3+R4 and
R1, namely VCC*R1/(R4+R3+R2+R1), about 1.31V, and the analog value is about 1626.

Similarly, when we press the key SW5, the OUT terminal voltage of the signal we read is the voltage between
R2+R3+R4+R5 and R1, namely VCC*R1/(R5+R4+R3+R2+R1), which is about 0.68V, and the analog value is about
844.

7.5. 5. Basic Projects 733

keyestudio WiKi

Components Required

ESP32 Board*1 ESP32 Expansion Board*1 keyestudio 5-Channel AD Button Mod-
ule*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

734 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : Five AD Keys
* Description : Read the value of Five AD Keys
* Auther : http//www.keyestudio.com
*/
int val = 0;
int ADkey = 34; //Define five AD keys connected to GPIO36
void setup() {

Serial.begin(9600); //Set baud rate to 9600
}

void loop() {
val = analogRead(ADkey); //Read the simulated value of the AD key and assign it to␣

→˓the variable val
Serial.print(val); //A newline prints the variable val
if (val <= 500) { //Val is less than or equal to 500 when no button is pressed

Serial.println(" no key is pressed");
} else if (val <= 1000) { //When key 5 is pressed,val is between 500 and 1000
Serial.println(" SW5 is pressed");

} else if (val <= 2000) { //When pressed,val is between 1000 and 2000
Serial.println(" SW4 is pressed");

} else if (val <= 3000) { //When pressed,val is between 2000 and 3000
Serial.println(" SW3 is pressed");

} else if (val <= 4000) { //When key 2 is pressed,val is between 3000 and 4000
Serial.println(" SW2 is pressed");

(continues on next page)

7.5. 5. Basic Projects 735

keyestudio WiKi

(continued from previous page)

} else { //When key 1 is pressed,val is greater than 4000
Serial.println(" SW1 is pressed");

}
}
//**

Code Explanation
We assign the read analog value to the variable val, and the serial monitor displays the value of val, (we set to 9600).

When the analog value is in the range of 500 and 1000, the button SW5 is pressed; when the analog value is in the 1000
and 2000, the button SW4 is pressed; when the analog value is between 2000 and 3000, the button SW3 is pressed;
when the analog value is between 3000 and 4000, the button SW2 is pressed. When the analog value is above 4000,
we judge that the button SW1 is pressed.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set baud rate to 9600. We
need to press the reset button on the ESP32, when the button is pressed, the serial monitor prints out the corresponding
information, as shown in the figure below.

736 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.30 Project 30: Joystick Module

Overview
Game handle controllers are ubiquitous.

It mainly uses PS2 joysticks. When controlling it, we need to connect the X and Y ports of the module to the analog
port of the single-chip microcomputer, port B to the digital port of the single-chip microcomputer, VCC to the power
output port(3.3-5V), and GND to the GND of the MCU. We can read the high and low levels of two analog values and
one digital port) to determine the working status of the joystick on the module.

In the experiment, two analog values(x axis and y axis) will be shown on Shell.

Working Principle

In fact, its working principle is very simple. Its inside structure is equivalent to two adjustable potentiometers and
a button. When this button is not pressed and the module is pulled down by R1, low levels will be output ; on the

7.5. 5. Basic Projects 737

keyestudio WiKi

contrary, when the button is pressed, VCC will be connected (high levels), When we move the joystick, the internal
potentiometer will adjust to output different voltages, and we can read the analog value.

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Joystick Module*1

5P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

738 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

//**
/*
* Filename : Joystick
* Description : Read data from Rocker.
* Auther : http//www.keyestudio.com
*/
int xyzPins[] = {34, 35, 13}; //x,y,z pins
void setup() {
Serial.begin(9600);
pinMode(xyzPins[0], INPUT); //x axis.
pinMode(xyzPins[1], INPUT); //y axis.
pinMode(xyzPins[2], INPUT_PULLUP); //z axis is a button.

}

// In loop(), use analogRead () to read the value of axes X and Y and use digitalRead ()␣
→˓to read the value of axis Z, then display them.
void loop() {
int xVal = analogRead(xyzPins[0]);
int yVal = analogRead(xyzPins[1]);
int zVal = digitalRead(xyzPins[2]);
Serial.println("X,Y,Z: " + String(xVal) + ", " + String(yVal) + ", " + String(zVal));
delay(500);

}
//**

Code Explanation
In the experiment, according to the wiring diagram, the x pin is set to GPIO34, the y pin is set to GPIO35 and the pin
of the joystick is set to GPIO13.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set baud rate to 9600.

We need to press the reset button on the ESP32, then the serial monitor will show the corresponding value. Moving
the joystick or pressing it will change the analog and digital values in the serial monitor .

7.5. 5. Basic Projects 739

keyestudio WiKi

7.5.31 Project 31: Relay Module

Overview
In our daily life, we usually use communication to drive electrical equipment, and sometimes we use switches to
control electrical equipment. If the switch is connected directly to the ac circuit, leakage occurs and people are in
danger. Therefore, from the perspective of safety, we specially designed this relay module with NO(normally open)
end and NC(normally closed) end.

Working Principle

740 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Relay is compatible with a variety of microcontroller control board, such as Arduino series microcontroller, which is a
small current to control the operation of large current “automatic switch”.

Input Voltage3.3V-5V

It can let the MCU control board drive 3A load, such as an LED lamp belt, a DC motor, a micro water pump and a
solenoid valve plugable interface design, which is easy to use.

Components Required

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Relay Module*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

7.5. 5. Basic Projects 741

keyestudio WiKi

Test Code

//**
/*
* Filename : Relay
* Description : Relay turn on and off.
* Auther : http//www.keyestudio.com
*/
#define Relay 15 // defines digital 15
void setup()
{
pinMode(Relay, OUTPUT); // sets "Relay" to "output"
}
void loop()
{
digitalWrite(Relay, HIGH); // turns on the relay
delay(1000); //delays 1 seconds
digitalWrite(Relay, LOW); // turns off the relay
delay(1000); // delays 1 seconds
}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. The relay will cycle on and off, on for 1 second, off for
1 second. At the same time, you can hear the sound of the relay on and off as well as see the change of the indicator

742 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

light on the relay.

7.5.32 Project 32: SK6812 RGB Module

Overview
In previous lessons, we learned about the plug-in RGB module and used PWM signals to color the three pins of the
module.

There is a Keyestudio 6812 RGB module whose the driving principle is different from the plug-in RGB module. It
can only control with one pin. This is a set. It is an intelligent externally controlled LED light source with the control
circuit and the light-emitting circuit. Each LED element is the same as a 5050 LED lamp bead, and each component
is pixel. There are four lamp beads on the module, which indicates four pixels.

In the experiment, we make different lights show different colors.

Working Principle
From the schematic diagram, we can see that these four pixel lighting beads are all connected in series. In fact, no
matter how many they are, we can use a pin to control a light and let it display any color. The pixel point contains a data
latch signal shaping amplifier drive circuit, a high-precision internal oscillator and a 12V high-voltage programmable
constant current control part, which effectively ensures the color of the pixel point light is highly consistent.

The data protocol adopts a single-wire zero-code communication method. After the pixel is powered up and reset, the
S terminal receives the data transmitted from the controller. The first 24bit data sent is extracted by the first pixel and
sent to the data latch of the pixel.

Components

7.5. 5. Basic Projects 743

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio 6812 RGB Module*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

//**
/*
* Filename : sk6812 RGB LED
* Description : turn on sk6812 RGB LED

(continues on next page)

744 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

* Auther : http//www.keyestudio.com
*/
#include <Adafruit_NeoPixel.h>

#define PIN 15

// Parameter 1 = number of pixels in strip
// Parameter 2 = Arduino pin number (most are valid)
// Parameter 3 = pixel type flags, add together as needed:
// NEO_KHZ800 800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)
// NEO_KHZ400 400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)
// NEO_GRB Pixels are wired for GRB bitstream (most NeoPixel products)
// NEO_RGB Pixels are wired for RGB bitstream (v1 FLORA pixels, not v2)
Adafruit_NeoPixel strip = Adafruit_NeoPixel(60, PIN, NEO_GRB + NEO_KHZ800);

// IMPORTANT: To reduce NeoPixel burnout risk, add 1000 uF capacitor across pixel power␣
→˓leads, add 300 - 500 Ohm resistor on first pixel's data input and minimize distance␣
→˓between Arduino and first pixel. Avoid connecting on a live circuit...if you must,␣
→˓connect GND first.

void setup() {
strip.begin();
strip.show(); // Initialize all pixels to 'off'

}

void loop() {
// Some example procedures showing how to display to the pixels:
colorWipe(strip.Color(255, 0, 0), 50); // Red
colorWipe(strip.Color(0, 255, 0), 50); // Green
colorWipe(strip.Color(0, 0, 255), 50); // Blue
// Send a theater pixel chase in...
theaterChase(strip.Color(127, 127, 127), 50); // White
theaterChase(strip.Color(127, 0, 0), 50); // Red
theaterChase(strip.Color(0, 0, 127), 50); // Blue

rainbow(20);
rainbowCycle(20);
theaterChaseRainbow(50);

}

// Fill the dots one after the other with a color
void colorWipe(uint32_t c, uint8_t wait) {
for(uint16_t i=0; i<strip.numPixels(); i++) {

strip.setPixelColor(i, c);
strip.show();
delay(wait);

}
}

void rainbow(uint8_t wait) {
uint16_t i, j;

(continues on next page)

7.5. 5. Basic Projects 745

keyestudio WiKi

(continued from previous page)

for(j=0; j<256; j++) {
for(i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel((i+j) & 255));

}
strip.show();
delay(wait);

}
}

// Slightly different, this makes the rainbow equally distributed throughout
void rainbowCycle(uint8_t wait) {
uint16_t i, j;

for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
for(i=0; i< strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));

}
strip.show();
delay(wait);

}
}

//Theatre-style crawling lights.
void theaterChase(uint32_t c, uint8_t wait) {
for (int j=0; j<10; j++) { //do 10 cycles of chasing
for (int q=0; q < 3; q++) {
for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, c); //turn every third pixel on

}
strip.show();

delay(wait);

for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off

}
}

}
}

//Theatre-style crawling lights with rainbow effect
void theaterChaseRainbow(uint8_t wait) {
for (int j=0; j < 256; j++) { // cycle all 256 colors in the wheel
for (int q=0; q < 3; q++) {

for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, Wheel((i+j) % 255)); //turn every third pixel on

}
strip.show();

delay(wait);

for (int i=0; i < strip.numPixels(); i=i+3) {

(continues on next page)

746 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

strip.setPixelColor(i+q, 0); //turn every third pixel off
}

}
}

}

// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
if(WheelPos < 85) {
return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
} else if(WheelPos < 170) {
WheelPos -= 85;
return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
} else {
WheelPos -= 170;
return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
}

}
//***

Test Code
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Then We can see 4 RGB leds on the module emitting
various color lighting effects.

7.5.33 Project 33: Rotary Encoder

Overview
In this kit, there is a Keyestudio rotary encoder, dubbed as switch encoder. It is applied to automotive electronics,
multimedia audio, instrumentation, household appliances, smart home, medical equipment and so on.

In the experiment, it it used for counting. When we rotate the rotary encoder clockwise, the set data is up 1; if you

7.5. 5. Basic Projects 747

keyestudio WiKi

rotate it anticlockwise, the set data falls by 1; and when the middle button is pressed, the value will be show in the
serial monitor.

Working Principle

The incremental encoder converts the displacement into a periodic electric signal, and then converts this sig-
nal into a counting pulse, and the number of pulses indicates the size of the displacement. This module mainly uses 20-
pulse rotary encoder components. It can calculate the number of pulses output during clockwise and reverse rota-
tion. There is no limit to count rotation. It resets to the initial state, that is, starts counting from 0.

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Rotary Encoder*1

5P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

748 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : Encoder
* Description : Rotary encoder module counting.
* Auther : http//www.keyestudio.com
*/
//Interfacing Rotary Encoder with Arduino
//Encoder Switch -> pin 27
//Encoder DT -> pin 14
//Encoder CLK -> pin 12

int Encoder_DT = 14;
int Encoder_CLK = 12;
int Encoder_Switch = 27;

int Previous_Output;
int Encoder_Count;

void setup() {
Serial.begin(9600);

//pin Mode declaration
pinMode (Encoder_DT, INPUT);
pinMode (Encoder_CLK, INPUT);

(continues on next page)

7.5. 5. Basic Projects 749

keyestudio WiKi

(continued from previous page)

pinMode (Encoder_Switch, INPUT);

Previous_Output = digitalRead(Encoder_DT); //Read the inital value of Output A
}

void loop() {
//aVal = digitalRead(pinA);

if (digitalRead(Encoder_DT) != Previous_Output)
{
if (digitalRead(Encoder_CLK) != Previous_Output)
{
Encoder_Count ++;
Serial.println(Encoder_Count);

}
else
{
Encoder_Count--;
Serial.println(Encoder_Count);

}
}

Previous_Output = digitalRead(Encoder_DT);

if (digitalRead(Encoder_Switch) == 0)
{
delay(5);
if (digitalRead(Encoder_Switch) == 0) {
Serial.println("Switch pressed");
while (digitalRead(Encoder_Switch) == 0);

}
}

}
//**

Code Explanation
Set CLK to GPIO12 and DAT to GPIO14.

This code is set well in the library file. When CLK descends, read the voltage of DAT, when DAT is a HIGH level, the
value of the rotary encoder is added by 1; when DAT is a LOW level, the value of the rotary encoder is cut down 1.

Set the pin of the button(GPIO27) to LOW and print.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set baud rate to 9600.

We need to press the reset button on the ESP32, then rotate the knob on the rotary encoder clockwise, the displayed
data will rise; on the contrary, in anticlockwise way, the data will decrease. Equally, press the button on the rotary
encoder, “Switch pressed” will be shown.

750 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.34 Project 34: Servo Control

Overview
Servo is a position control rotary actuator. It mainly consists of a housing, a circuit board, a core-less motor, a gear and
a position sensor.

In general, servo has three lines in brown, red and orange. The brown wire is grounded, the red one is a positive pole
line and the orange one is a signal line.

7.5. 5. Basic Projects 751

keyestudio WiKi

Working Principle
When the motor speed is constant, the potentiometer is driven to rotate through the cascade reduction gear, which leads
that the voltage difference is 0, and the motor stops rotating. Generally, the angle range of servo rotation is 0° –180 °

The rotation angle of servo motor is controlled by regulating the duty cycle of PWM (Pulse-Width Modulation) signal.
The standard cycle of PWM signal is 20ms (50Hz). Theoretically, the width is distributed between 1ms-2ms, but in
fact, it’s between 0.5ms-2.5ms. The width corresponds the rotation angle from 0° to 180°. But note that for different
brand motors, the same signal may have different rotation angles.

Components

ESP32 Board*1 ESP32 Expansion
Board*1

Servo*1 Micro USB Cable*1

752 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Connection Diagram

Test Code 1

//**
/*
* Filename : Servo_1
* Description : Steering gear rotation Angle 0-90-180, repeatly
* Auther : http//www.keyestudio.com
*/
int servoPin = 4;//steering gear PIN

void setup() {
pinMode(servoPin, OUTPUT);//steering pin is set to output

}
void loop() {
servopulse(servoPin, 0);//Rotate it to zero degrees
delay(1000);//delay 1S
servopulse(servoPin, 90);//Rotate it to 90 degrees
delay(1000);
servopulse(servoPin, 180);//Rotate it to 180 degrees
delay(1000);

}

void servopulse(int pin, int myangle) { //Impulse function
int pulsewidth = map(myangle, 0, 180, 500, 2500); //Map Angle to pulse width
for (int i = 0; i < 10; i++) { //Output a few more pulses

(continues on next page)

7.5. 5. Basic Projects 753

keyestudio WiKi

(continued from previous page)

digitalWrite(pin, HIGH);//Set the steering gear interface level to high
delayMicroseconds(pulsewidth);//The number of microseconds of delayed pulse width␣

→˓value
digitalWrite(pin, LOW);//Lower the level of steering gear interface
delay(20 - pulsewidth / 1000);

}
}
//**

Code Explanation 1
1). map(value, fromLow, fromHigh, toLow, toHigh)
Value is the value we map. fromLow, fromHigh is the maximum and minimum value

toLow, toHigh are the upper limit and lower limit we map. For example, map(myangle, 0, 180, 500, 2500) means that
an angle value myangle (0°-180°the mapping range is from 500us to 2500us.

2). servopulse()
We use the function servopulse() to make the servo move. We also make the servo rotate 0°, 90° and 180°cyclically.

Test Result 1
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on, the servo will rotate 0°90° and 180° cyclically.

Test Code 2

//**
/*
* Filename : Servo Sweep
* Description : Control the servo motor for sweeping
* Auther : http//www.keyestudio.com
*/
#include <ESP32Servo.h>

Servo myservo; // create servo object to control a servo

int posVal = 0; // variable to store the servo position
int servoPin = 4; // Servo motor pin

void setup() {
myservo.setPeriodHertz(50); // standard 50 hz servo
myservo.attach(servoPin, 500, 2500); // attaches the servo on servoPin to the servo␣

→˓object
}
void loop() {

for (posVal = 0; posVal <= 180; posVal += 1) { // goes from 0 degrees to 180 degrees
// in steps of 1 degree
myservo.write(posVal); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position

}
for (posVal = 180; posVal >= 0; posVal -= 1) { // goes from 180 degrees to 0 degrees

myservo.write(posVal); // tell servo to go to position in variable 'pos'
(continues on next page)

754 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

delay(15); // waits 15ms for the servo to reach the position
}

}
//**

Code Explanation 2
myservo. write (pos) is the rotation angle to POS. myservo. read () reads the current angle value of the servo.

Test Result 2
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on, the servo will rotate from 0° to 180° by moving 1° for
each 15ms.

7.5.35 Project 35: Ultrasonic Sensor

Overview
Bats and some marine animals are able to use high frequencies of sound for echolocation or communication. They can
emit ultrasonic waves from the larynx through the mouth or nose and use the sound waves that bounce back to orient
and determine the position, size and whether nearby objects are moving.

Ultrasonic is a frequency higher than 20000 Hz sound wave, which has a good direction, a strong penetration ability,
and is easy to obtain more concentrated sound energy as well as spread far in the water. It can be used for ranging,
speed measurement, cleaning, welding, gravel, sterilization and disinfection. What‘s more, it has many applications in
medicine, military, industry and agriculture.

In this kit, there is a keyes HC-SR04 ultrasonic sensor, which can detect obstacles in front and the detailed distance
between the sensor and the obstacle. Its principle is the same as that of bat flying. It can emit the ultrasonic signals that
cannot be heard by humans. When these signals hit an obstacle and come back immediately. The distance between the
sensor and the obstacle can be calculated by the time gap of emitting signals and receiving signals.

In the experiment, we use the sensor to detect the distance between the sensor and the obstacle, and print the test result.

Working Principle
The most common ultrasonic ranging method is the echo detection. As shown below; when the ultrasonic emitter emits
the ultrasonic waves towards certain direction, the counter will count. The ultrasonic waves travel and reflect back once
encountering the obstacle. Then the counter will stop counting when the receiver receives the ultrasonic waves coming
back.

The ultrasonic wave is also sound wave, and its speed of sound V is related to temperature. Generally, it travels 340m/s
in the air. According to time t, we can calculate the distance s from the emitting spot to the obstacle. $𝑠 = 340𝑡/2$
The HC-SR04 ultrasonic ranging module can provide a non-contact distance sensing function of 2cm-400cm, and the
ranging accuracy can reach as high as 3mm; the module includes an ultrasonic transmitter, receiver and control circuit.
Basic working principle:

7.5. 5. Basic Projects 755

keyestudio WiKi

1). First pull down the TRIG, and then trigger it with at least 10us high level signal;

2). After triggering, the module will automatically transmit eight 40KHZ square waves, and automatically detect
whether there is a signal to return.

3). If there is a signal returned back, through the ECHO to output a high level, the duration time of high level is actually
the time from emission to reception of ultrasonic. $𝑇𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐻𝑖𝑔ℎ𝐿𝑒𝑣𝑒𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 * 340𝑚/𝑠 * 0.5$

Components

ESP32 Board*1 ESP32 Expansion Board*1 keyestudio SR01 Ultrasonic Sensor*1

4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

756 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : Ultrasonic
* Description : Use the ultrasonic module to measure the distance.
* Auther : http//www.keyestudio.com
*/
const int TrigPin = 13; // define TrigPin
const int EchoPin = 14; // define EchoPin.
int duration = 0; // Define the initial value of the duration to be 0
int distance = 0;//Define the initial value of the distance to be 0
void setup()
{
pinMode(TrigPin , OUTPUT); // set trigPin to output mode
pinMode(EchoPin , INPUT); // set echoPin to input mode
Serial.begin(9600); // Open serial monitor at 9600 baud to see ping results.

}
void loop()
{
// make trigPin output high level lasting for 10s to triger HC_SR04
digitalWrite(TrigPin , HIGH);
delayMicroseconds(10);
digitalWrite(TrigPin , LOW);
// Wait HC-SR04 returning to the high level and measure out this waitting time
duration = pulseIn(EchoPin , HIGH);
// calculate the distance according to the time
distance = (duration/2) / 28.5 ;
Serial.print("Distance: ");
Serial.print(distance); //Serial port print distance value
Serial.println("cm");

(continues on next page)

7.5. 5. Basic Projects 757

keyestudio WiKi

(continued from previous page)

delay(300); // Wait 100ms between pings (about 20 pings/sec).
}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set baud rate to 9600.

We need to press the reset button on the ESP32, then the serial monitor will print the distance between the ultrasonic
sensor and the object.

758 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.36 Project 36: IR Receiver Module

Overview
Infrared remote control is currently the most widely used means of communication and remote control, which has
the characteristics of small volume, low power consumption, strong function and low cost. Therefore, recorder, audio
equipment, air conditioning machine and toys and other small electrical devices have also used the infrared remote
control.

Its transmitting circuit is the use of infrared light emitting diode to emit modulated infrared light wave. The circuit
is composed of infrared receiving diode, triode or silicon photocell. They convert infrared light emitted by infrared
emitter into corresponding electrical signal, and then send back amplifier.

In this experiment, we need to know how to use the infrared receiving sensor. The infrared receiving sensor mainly uses
the VS1838B infrared receiving sensor element. It integrates receiving, amplifying, and demodulating. The internal
IC has already completed the demodulation, and the output is a digital signal. It can receive 38KHz modulated remote
control signal.

In the experiment, we use the IR receiver to receive the infrared signal emitted by the external infrared transmitting
device, and display the received signal in the shell.

Working Principle
The main part of the IR remote control system is modulation, transmission and reception. The modulated carrier
frequency is generally between 30khz and 60khz, and most of them use a square wave of 38kHz and a duty ratio of 1/3.
A 4.7K pull-up resistor R3 is added to the signal end of the infrared receiver.

7.5. 5. Basic Projects 759

keyestudio WiKi

Components

ESP32 Board*11 ESP32 Expansion Board*1 Keyestudio DIYIR Receiver*1

3P Dupont Wire*1 Micro USB Cable*1 Remote Control*1

Connection Diagram

760 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : IR Receiver
* Description : Decode the infrared remote control and print it out through the serial␣
→˓port.
* Auther : http//www.keyestudio.com
*/
#include <Arduino.h>
#include <IRremoteESP8266.h>
#include <IRrecv.h>
#include <IRutils.h>

const uint16_t recvPin = 15; // Infrared receiving pin
IRrecv irrecv(recvPin); // Create a class object used to receive class
decode_results results; // Create a decoding results class object

void setup() {
Serial.begin(9600); // Initialize the serial port and set the baud rate to 9600
irrecv.enableIRIn(); // Start the receiver
Serial.print("IRrecvDemo is now running and waiting for IR message on Pin ");
Serial.println(recvPin); //print the infrared receiving pin

}

void loop() {
if (irrecv.decode(&results)) { // Waiting for decoding
serialPrintUint64(results.value, HEX);// Print out the decoded results
Serial.println("");

(continues on next page)

7.5. 5. Basic Projects 761

keyestudio WiKi

(continued from previous page)

irrecv.resume(); // Release the IRremote. Receive the next value
}
delay(1000);

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set baud rate to 9600; Find
the infrared remote control, pull out the insulating sheet, and press the button at the receiving head of the infrared
receiving sensor. After receiving the signal, the LED on the infrared receiving sensor also starts to flash, as shown in
the figure below.

Write down the key code value associated with the infrared remote with each key, as you will need this information
later.

762 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.37 Project 37: DS18B20 Temperature Sensor

Description
In this kit, there is a DS18B20 temperature sensor, which is from maxim. The MCU can communicate with the
DS18B20 through 1-Wire protocol, and finally read the temperature. In this experiment, we will use this temperature
sensor to measure the temperature in the current environment. The test result is ℃, ranging from -55℃ to +125℃.
We will display the test result on shell.

Working Principle

7.5. 5. Basic Projects 763

keyestudio WiKi

The hardware interface of the 1-Wire bus is very simple, just connect the data pin of the DS18B20 to an IO port of
the microcontroller. The timing of the 1-Wire bus is relatively complex. Many students can’t understand the timing
diagram independently here. We have encapsulated the complex timing operations in the library, and you can use the
library functions directly.

Schematic Diagram of DS18B20
This can save up to 12-bit temperature vale. In the register, save in code complement. As shown below;

A total of 2 bytes, LSB is the low byte, MSB is the high byte, where MSb is the high byte of the byte, LSb is the
low byte of the byte. As you can see, the binary number, the meaning of the temperature represented by each bit, is
expressed. Among them, S represents the sign bit, and the lower 11 bits are all powers of 2, which are used to represent
the final temperature. The temperature measurement range of DS18B20 is from -55 degrees to +125 degrees, and the
expression form of temperature data, S represents positive and negative temperature, and the resolution is 2, which is
0.0625.

Required Components

764 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIY 18B20 Temperature Sen-
sor*1

3P Dupont Wire*1 Micro USB Cable*1

Required Components

Test Code

//**
/*
* Filename : ds18b20
* Description : Read the temperature of ds18B20

(continues on next page)

7.5. 5. Basic Projects 765

keyestudio WiKi

(continued from previous page)

* Auther : http//www.keyestudio.com
*/
#include <DS18B20.h>

//ds18b20 pin to 15
DS18B20 ds18b20(15);

void setup() {
Serial.begin(9600);

}

void loop() {
double temp = ds18b20.GetTemp();//Read the temperature
temp *= 0.0625;//The conversion accuracy is 0.0625/LSB
Serial.print("Temperature: ");
Serial.print(temp);
Serial.println("C");
delay(1000);

}
//**

Code Explanation
1). We set the pin to GPIO15 and obtain the temperature in the unit of ℃.

2). Set a double decimal variable to temp, and assign the measured result to temp.

3). The serial monitor displays the temp value, and the baud rate needs to be set before displaying (our default setting
is 9600, which can be changed).

4). We add the unit behind the data. If the unit is directly set to °C, the test result will be garbled. So we directly replace
℃ with C.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set baud rate to 9600. We
need to press the reset button on the ESP32, then the monitor will display the temperature of the current environment,
as shown below.

766 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.38 Project 38: XHT11 Temperature and Humidity Sensor

Description
This DHT11 temperature and humidity sensor is a composite sensor which contains a calibrated digital signal output

7.5. 5. Basic Projects 767

keyestudio WiKi

of the temperature and humidity.

DHT11 temperature and humidity sensor uses the acquisition technology of the digital module and temperature and
humidity sensing technology, ensuring high reliability and excellent long-term stability.

It includes a resistive element and a NTC temperature measuring device.

Working Principle
The communication and synchronization between the single-chip microcomputer and XHT11 adopts the single bus
data format. The communication time is about 4ms. The data is divided into fractional part and integer part.

Operation process: A complete data transmission is 40bit, high bit first out. Data format: 8bit humidity integer data
+ 8bit humidity decimal data + 8bit temperature integer data + 8bit temperature decimal data + 8bit checksum 8-bit
checksum: 8-bit humidity integer data + 8-bit humidity decimal data + 8-bit temperature integer data + 8-bit temperature
decimal data “Add the last 8 bits of the result.

Required Components

ESP32Board*1 ESP32 Expansion
Board*1

Keyestudio XHT11 Temperature and Humidity Sensor-
compatible with DHT11)*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

768 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : xht11
* Description : Read the temperature and humidity values of XHT11.
* Auther : http//www.keyestudio.com
*/
#include "xht11.h"
//gpio15
xht11 xht(15);

unsigned char dht[4] = {0, 0, 0, 0};//Only the first 32 bits of data are received, not␣
→˓the parity bits
void setup() {

Serial.begin(9600);//Start the serial port monitor and set baud rate to 9600
}

void loop() {
if (xht.receive(dht)) { //Returns true when checked correctly
Serial.print("RH:");
Serial.print(dht[0]); //The integral part of humidity, DHT [1] is the fractional part
Serial.print("% ");
Serial.print("Temp:");
Serial.print(dht[2]); //The integral part of temperature, DHT [3] is the fractional␣

→˓part
Serial.println("C");

} else { //Read error
(continues on next page)

7.5. 5. Basic Projects 769

keyestudio WiKi

(continued from previous page)

Serial.println("sensor error");
}
delay(1000); //It takes 1000ms to wait for the device to read

}
//**

Code Explanation
1). We set the pin to GPIO15, and store the detected temperature and humidity data in the dht[4] array.

2). We add units behind the data. If the temperature unit is directly set to °C, the test results may be wrong, so we
directly replace °C with C; the humidity unit is directly set to %.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set baud rate to 9600. We
need to press the reset button on the ESP32, then the monitor will display the temperature and humidity data of the
current environment, as shown below.

770 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.39 Project 39: DS1307 Clock Module

Overview
This module mainly uses the real-time clock chip DS1307, which is the I2C bus interface chip that has second, minute,
hour, day, month, year and other functions as well as leap year automatic adjustment function introduced by DALLAS.
It can work independently of CPU, and won‘t’ affected by the CPU main crystal oscillator and capacitance as well
as keep accurate time. What‘s more, monthly cumulative error is generally less than 10 s. The chip also has a clock
protection circuit in case of main power failure and runs on a back-up battery that denies the CPU read and write access.

At the same time, it contains automatic switching control circuit of standby power supply, making it guarantees the
accuracy of system clock in case of power failure of main power supply and other bad environment.

Going forward, the DS1307 chip internal integration has a certain capacity, with power failure protection characteristics
of static RAM, which can be used to save some key data.

In the experiment, we use the DS1307 clock module to obtain the system time and print the test results.

7.5. 5. Basic Projects 771

keyestudio WiKi

Working Principle
Serial real-time clock records year, month, day, hour, minute, second and week; AM and PM indicate morning and
afternoon respectively; 56 bytes of NVRAM store data; 2-wire serial port; programmable square wave output; power
failure detection and automatic switching circuit; battery current is less than 500nA.

Pins description

• X1, X2: 32.768kHz crystal terminal ;

• VBAT+3V input;

• SDAserial data;

• SCLserial clock;

• SQW/OUTsquare waves/output drivers

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DS1307 Clock Module*1

4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

772 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : DS1307 Real Time Clock
* Description : Read the year/month/day/hour/minute/second/week of DS1307 clock module
* Auther : http//www.keyestudio.com
*/
#include <Wire.h>
#include "RtcDS1307.h" //DS1307 clock module library

RtcDS1307<TwoWire> Rtc(Wire);//i2cport

void setup(){
Serial.begin(57600);//Set baud rate to 57600
Rtc.Begin();
Rtc.SetIsRunning(true);

Rtc.SetDateTime(RtcDateTime(__DATE__, __TIME__));
}

void loop(){
// Print year/month/day/hour/minute/second/week

(continues on next page)

7.5. 5. Basic Projects 773

keyestudio WiKi

(continued from previous page)

Serial.print(Rtc.GetDateTime().Year());
Serial.print("/");
Serial.print(Rtc.GetDateTime().Month());
Serial.print("/");
Serial.print(Rtc.GetDateTime().Day());
Serial.print(" ");
Serial.print(Rtc.GetDateTime().Hour());
Serial.print(":");
Serial.print(Rtc.GetDateTime().Minute());
Serial.print(":");
Serial.print(Rtc.GetDateTime().Second());
Serial.print(" ");
Serial.println(Rtc.GetDateTime().DayOfWeek());
delay(1000);//Delay 1 second

}
//**

Code Explanation
Rtc.GetDateTime(): the obtained current time and date.

Rtc.Begin(); enable DS1307 real-time clock.

Rtc.SetIsRunning(true); run the DS1307 real-time clock, if true changes into false, time will stop.

Rtc.SetDateTime()set time.

Rtc.GetDateTime().Year(): return year.

Rtc.GetDateTime().Month(): return month.

Rtc.GetDateTime().Day(): return date.

Rtc.GetDateTime().Hour(): return hour.

Rtc.GetDateTime().Minute(): return minute.

Rtc.GetDateTime().Second(): return second.

Rtc.GetDateTime().DayOfWeek(): return week.

Test Result
Connect the wires according to the experimental wiring diagram, attach the DS1307 sensor to a battery, compile and
upload the code to the ESP32. After uploading successfullywe will use a USB cable to power on. Open the serial
monitor and set baud rate to 57600. We need to press the reset button on the ESP32, then we can see the displayed
year, month, day, hour, minute, second and week on the monitor, and set the time and date to refresh every second, as
shown below:

774 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.40 Project 40: ADXL345 Acceleration Sensor

Overview
In this kit, there is a DIY electronic building block ADXL345 acceleration sensor module, which uses the
ADXL345BCCZ chip. The chip is a small, thin, low-power 3-axis accelerometer with a high resolution (13 bits)
and a measurement range of ±16g that can measure both dynamic acceleration due to motion or impact as well as
stationary acceleration such as gravitational acceleration, making the device usable as a tilt sensor.

Working Principle
The ADXL345 is a complete 3-axis acceleration measurement system with a selection of measurement ranges of ±2
g, ±4 g, ±8 g or ±16 g. Its digital output data is in 16-bit binary complement format and can be accessed through an
SPI (3-wire or 4-wire) or I2C digital interface.

The sensor can measure static acceleration due to gravity in tilt detection applications, as well as dynamic acceleration
due to motion or impact. Its high resolution (3.9mg/LSB) enables measurement of tilt Angle changes of less than 1.0°.

7.5. 5. Basic Projects 775

keyestudio WiKi

Components Required

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio ADXL345 Acceleration Mod-
ule*1

4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

776 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : ADXL345
* Description : Read the X/Y/Z value of ADXL345
* Auther : http//www.keyestudio.com
*/
#include "adxl345_io.h"
//The port is sda-->21,scl-->22
adxl345 adxl345(21, 22);

float out_X, out_Y, out_Z;

void setup() {
Serial.begin(57600);//Start serial port monitoring and set baud rate to 57600
adxl345.Init();

}

void loop() {
adxl345.readXYZ(&out_X, &out_Y, &out_Z);
Serial.print(out_X);
Serial.print("g ");
Serial.print(out_Y);

(continues on next page)

7.5. 5. Basic Projects 777

keyestudio WiKi

(continued from previous page)

Serial.print("g ");
Serial.print(out_Z);
Serial.println("g");
delay(100);

}
//**

Code Explanation
Set 3 decimal variables out_X out_Y out_Z, and assign the measured result to out_X out_Y out_Z. The serial monitor
displays the value of out_X out_Y out_Z, and the baud rate needs to be set before displaying (our default setting is
9600, which can be changed).

Adxl345.Init; Initialize the ADXX345 accelerometer

adxl345.readXYZ(&out_X, &out_Y, &out_Z);**

Get the acceleration value of the X axis and return it to the variables out_X, out_Y, out_Z

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set baud rate to 57600.

We need to press the reset button on the ESP32, then the serial monitor displays the value corresponding to the sensor,
the unit is mg, as shown in the figure below.

778 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.5.41 Project 41: TM1650 4-Digit Tube Display

Overview This module is mainly composed of a 0.36 inch red common cathode 4-digit digital tube, and its driver chip
is TM1650. When using it, we only need two signal lines to make the single-chip microcomputer control a 4-bitdigit
tube, which greatly saves the IO port resources of the control board.

TM1650 is a special circuit for LED (light emitting diode display) drive control. It integrates MCU input and output
control digital interface, data latch, LED drivers, keyboard scanning, brightness adjustment and other circuits.

TM1650 has stable performance, reliable quality and strong anti-interference ability.

It can be applied to the application of long-term continuous working for 24 hours.

TM1650 uses 2-wire serial transmission protocol for communication (note that this data transmission protocol is not a
standard I2C protocol). The chip can drive the digital tube and save MCU pin resources through two pins and MCU
communication.

Working Principle
TM1650 adopts IIC treaty, which uses DIO and CLK buses.

7.5. 5. Basic Projects 779

keyestudio WiKi

Data command setting: 0x48 means that we light up the digital tube, instead of enable the function of key scanning

Command display setting:
bit[6:4]: set the brightness of tube display, and 000 is brightest

bit[3]: set to show decimal points

bit[0]: start the display of the tube display

Components

780 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio TM16504-Digit Segment Dis-
play*1

4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

7.5. 5. Basic Projects 781

keyestudio WiKi

//**
/*
* Filename : TM1650 Four digital tube
* Description : TM1650 Four Digital Tube shows 0-9999
* Auther : http//www.keyestudio.com
*/
#include "TM1650.h"
#define CLK 22 //pins definitions for TM1650 and can be changed to other ports
#define DIO 21
TM1650 DigitalTube(CLK,DIO);

void setup(){
DigitalTube.setBrightness(); //set brightness, 0---7, default : 2
DigitalTube.displayOnOFF(); //display on or off, 0=display off, 1=display on,␣

→˓default : 1
for(char b=1;b<5;b++){

DigitalTube.clearBit(b); //DigitalTube.clearBit(0 to 3); Clear bit display.
}
// DigitalTube.displayDot(1,true); //Bit0 display dot. Use before displayBit().
DigitalTube.displayBit(1,0); //DigitalTube.Display(bit,number); bit=0---3 number=0-

→˓--9
}

void loop(){
for(int num=0; num<10000; num++){
displayFloatNum(num);
delay(100);

}
}

void displayFloatNum(float num){
if(num > 9999)
return;

int dat = num*10;
//DigitalTube.displayDot(2,true); //Bit0 display dot. Use before displayBit().
if(dat/10000 != 0){
DigitalTube.displayBit(1, dat%100000/10000);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%10000/1000 != 0){
DigitalTube.clearBit(1);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%1000/100 != 0){
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.displayBit(3, dat%1000/100);

(continues on next page)

782 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

DigitalTube.displayBit(4, dat%100/10);
return;

}
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.clearBit(3);
DigitalTube.displayBit(4, dat%100/10);

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. The 4-digit tube display will show integer from 0 to 99999,
add 1 for each 10ms. Increase to 9999 then start from 0.

7.5.42 Project 42: HT16K33_8X8 Dot Matrix Module

Overview
What is the dot matrix display?

If we apply the previous circuit, there will be must one IO port to control only one LED. When more LED need to be
controlled, we may adopt a dot matrix. The 8X8 dot matrix is composed of 64 light-emitting diodes, and each light-

7.5. 5. Basic Projects 783

keyestudio WiKi

emitting diode is placed at the intersection of the row line and the column line. Refer to the experimental schematic
diagram below, when the corresponding column is set to a high level and a certain row to low, the corresponding diode
will light up. . . For instance, set pin 13 to a high level and pin 9 to low, and then the first LED will light up. In the
experiment, we display icons via this dot matrix.

Working Principle
As the schematic diagram shown, to light up the LED at the first row and column, we only need to set C1 to high level
and R1 to low level. To turn on LEDs at the first row, we set R1 to low level and C1-C8 to high level.

16 IO ports are needed, which will highly waste the MCU resources.

Therefore, we designed this module, using the HT16K33 chip to drive an 8*8 dot matrix, which greatly saves the
resources of the single-chip microcomputer.

There are three DIP switches on the module, all of which are set to I2C communication address. The setting method
is shown below. A0A1 and A2 are grounded, that is, the address is 0x70.

Components

784 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio HT16K33_8X8 Dot Ma-
trix*1

4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

7.5. 5. Basic Projects 785

keyestudio WiKi

//**
/*
* Filename : 8×8 Dot-matrix Display
* Description : 8x8 LED dot matrix display“Heart” pattern.
* Auther : http//www.keyestudio.com
*/
#include "HT16K33_Lib_For_ESP32.h"

#define SDA 21
#define SCL 22

ESP32_HT16K33 matrix = ESP32_HT16K33();

//The brightness values can be set from 1 to 15, with 1 darkest and 15 brightest
#define A 15

byte result[8][8];
byte test1[8] = {0x00,0x42,0x41,0x09,0x09,0x41,0x42,0x00};

void setup()
{
matrix.init(0x70, SDA, SCL);//Initialize matrix
matrix.showLedMatrix(test1,0,0);
matrix.show();

}

void loop()
{
for (int i = 0; i <= 7; i++)
{
matrix.setBrightness(i);
delay(100);

}
for (int i = 7; i > 0; i--)
{
matrix.setBrightness(i);
delay(100);

}
}
//**

Code Explanation
First we need to import the library file.

The pattern in our code is an array of byte data type, which is shown in the table below. We convert into binary, and
fill in the 8*8 form below to make it clear. 1 means on, 0 means off. Then we can see that it is a smile shape.

786 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. Then the dot matrix displays a “ smile” pattern.

7.5. 5. Basic Projects 787

keyestudio WiKi

7.5.43 Project 43: LCD_128X32_DOT Module

Description
This is a 128*32 pixel LCD module, which uses IIC communication mode and ST7567A driver chip . At the same
time, the code contains all the English letters and common symbols of the library that can be directly called. When
used, we can also set English letters and symbols to display different text sizes in our code. To make it easy to set up
the pattern display, we also provide a mold capture software that can convert a specific pattern into control code and
then copy it directly into the test code for use.

In the experiment, we will set up the display screen to display various English words, common symbols and numbers.

Working Principle

788 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

The module uses the IIC communication principle, the underlying functions have been encapsulated in the library
surface, we can directly call the library function, if interested, you can also go to understand the underlying driver of
the module.

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio LCD_128X32_DOT Mod-
ule*1

4P Dupont Wire*1 Micro USB Cable*1

7.5. 5. Basic Projects 789

keyestudio WiKi

Connection Diagram

Test Code

//**
/*
* Filename : lcd128*32
* Description : Lcd128 *32 Displays character strings
* Auther : http//www.keyestudio.com
*/
#include "lcd128_32_io.h"

//Create lcd12832 examples,sda--->21 scl--->22
lcd lcd(21, 22);

void setup() {
lcd.Init(); //initialize
lcd.Clear(); //cls

}

void loop() {
lcd.Cursor(0, 7); //Set display position
lcd.Display("KEYES"); //Setting the display

(continues on next page)

790 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

lcd.Cursor(1, 0);
lcd.Display("ABCDEFGHIJKLMNOPQR");
lcd.Cursor(2, 0);
lcd.Display("123456789+-*/<>=$@");
lcd.Cursor(3, 0);
lcd.Display("%^&(){}:;'|?,.~\\[]");

}
//**

Code Explanation
First import the library file

.Init(): initializes the display screen;

.Clear(): clears the display;

.Cursor(): sets the display position;

.Display(): displays characters.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32.

After uploading successfully, we will use a USB cable to power on. The first line of the 128X32LCD module display
shows “KEYES”, the second line shows “ABCDEFGHIJKLMNOPQR”, and the third line shows “123456789±*/<>
=$@”, the fourth line displays “%^&(){}:;’|?,.~\[]”.

7.5.44 Project 44: RFID Module

Description
RFIDRFID-RC522 radio frequency module adopts a Philips MFRC522 original chip to design card reading circuit,
easy to use and low cost, suitable for equipment development and card reader development and so on.

RFID or Radio Frequency Identification system consists of two main components, a transponder/tag attached to an
object to be identified, and a transceiver also known as interrogator/Reader.

7.5. 5. Basic Projects 791

keyestudio WiKi

In the experiment, the data read by the card swipe module is 4 hexadecimal numbers, and we print these four hexadeci-
mal numbers as strings. For example, we read the data of the IC card below: 0xED0xF70x940x5A and the information
string displayed in the serial monitor is ED F7 94 5A ; the data read from the keychain is: 0x4C0x090x6B0x6E .
Different IC cards and different key chains have diverse data.

Working Principle
Radio frequency identification, the card reader is composed of a radio frequency module and a high-level magnetic field.
The Tag transponder is a sensing device, and this device does not contain a battery. It only contains tiny integrated
circuit chips and media for storing data and antennas for receiving and transmitting signals. To read the data in the tag,
first put it into the reading range of the card reader. The reader will generate a magnetic field, and because the magnetic
energy generates electricity according to Lenz’s law, the RFID tag will supply power, thereby activating the device.

Components Required

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY RFID
Module*1

4P Dupont Wire*1

Micro USB Cable*1 Key*1 IC Card*1

Connection Diagram

792 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : RFID
* Description : RFID reader UID
* Auther : http//www.keyestudio.com
*/
#include <Wire.h>
#include "MFRC522_I2C.h"
// IIC pins default to GPIO21 and GPIO22 of ESP32
// 0x28 is the i2c address of SDA, if doesn't matchplease check your address with i2c.
MFRC522 mfrc522(0x28); // create MFRC522.

void setup() {
Serial.begin(115200); // initialize and PC's serial communication
Wire.begin(); // initialize I2C
mfrc522.PCD_Init(); // initialize MFRC522
ShowReaderDetails(); // dispaly PCD - MFRC522 read carder
Serial.println(F("Scan PICC to see UID, type, and data blocks..."));

}

void loop() {
(continues on next page)

7.5. 5. Basic Projects 793

keyestudio WiKi

(continued from previous page)

//
if (! mfrc522.PICC_IsNewCardPresent() || ! mfrc522.PICC_ReadCardSerial()) {
delay(50);
return;

}

// select one of door cards. UID and SAK are mfrc522.uid.

// save UID
Serial.print(F("Card UID:"));
for (byte i = 0; i < mfrc522.uid.size; i++) {
Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ");
Serial.print(mfrc522.uid.uidByte[i], HEX);

}
Serial.println();

}

void ShowReaderDetails() {
// attain the MFRC522 software
byte v = mfrc522.PCD_ReadRegister(mfrc522.VersionReg);
Serial.print(F("MFRC522 Software Version: 0x"));
Serial.print(v, HEX);
if (v == 0x91)
Serial.print(F(" = v1.0"));

else if (v == 0x92)
Serial.print(F(" = v2.0"));

else
Serial.print(F(" (unknown)"));

Serial.println("");
// when returning to 0x00 or 0xFF, may fail to transmit communication signals
if ((v == 0x00) || (v == 0xFF)) {
Serial.println(F("WARNING: Communication failure, is the MFRC522 properly connected?

→˓"));
}

}
//**

Code Explanation
Wire.begin(); The module we use is the IIC interface, so we first initialize the IIC

mfrc522.PCD_Init(); initialize MFRC522

String(mfrc522.uid.uidByte[i], HEX); A string to convert the value read into hexadecimal format.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. Open the serial monitor and set baud rate to 115200. We
need to press the reset button on the ESP32, when we make the IC card close to the RFID module, the information will
be printed out, as shown in the figure below.

794 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.6 6. Comprehensive Projects:

The previous projects are related to single sensor or module. In the following part, we will combine various sensors
and modules to create some comprehensive experiments to perform special functions.

7.6. 6. Comprehensive Projects: 795

keyestudio WiKi

7.6.1 Project 45: Button-controlled LED

Overview
In this lesson, we will make an extension experiment with a button and an LED. When the button is pressed and low
levels are output, the LED will light up; when the button is released, the LED will go off. Then we can control a module
with another module.

Components

796 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Purple LED Module*1

Keyestudio DIY Button Module*1 3P Dupont Wire*2 Micro USB Cable*1

Connection Diagram

Test Code

//**
/*
* Filename : button_control_LED
* Description : Make a table lamp.
* Auther : http//www.keyestudio.com
*/
#define PIN_LED 4

(continues on next page)

7.6. 6. Comprehensive Projects: 797

keyestudio WiKi

(continued from previous page)

#define PIN_BUTTON 15
bool ledState = false;

void setup() {
// initialize digital pin PIN_LED as an output.
pinMode(PIN_LED, OUTPUT);
pinMode(PIN_BUTTON, INPUT);

}

// the loop function runs over and over again forever
void loop() {
if (digitalRead(PIN_BUTTON) == LOW) {
delay(20);
if (digitalRead(PIN_BUTTON) == LOW) {
reverseGPIO(PIN_LED);

}
while (digitalRead(PIN_BUTTON) == LOW);

}
}

void reverseGPIO(int pin) {
ledState = !ledState;
digitalWrite(pin, ledState);

}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. When the button is pressed, the LED will light up; when
pressed again, the LED will go off.

7.6.2 Project 46: Alarm Experiment

Overview
In the previous experiment, we control an output module though an input module. In this lesson, we will make an
experiment that the active buzzer will emit sounds once an obstacle appears.

Components

798 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Obstacle Avoidance Sen-
sor*1

Keyestudio Active Buzzer*1 3P Dupont Wire*2 Micro USB Cable*1

Connection Diagram

Test Code

//**
/*
* Filename : Avoiding alarm
* Description : Obstacle avoidance sensor controls the buzzer
* Auther : http//www.keyestudio.com
*/
int item = 0;

(continues on next page)

7.6. 6. Comprehensive Projects: 799

keyestudio WiKi

(continued from previous page)

void setup() {
pinMode(15, INPUT); //Obstacle avoidance sensor is connected to GPIO15 and set to␣

→˓input mode
pinMode(4, OUTPUT); //The buzzer is connected to GPIO4 and set to output mode

}

void loop() {
item = digitalRead(15);//Read the level value output by the obstacle avoidance sensor
if (item == 0) {//Obstruction detected
digitalWrite(4, HIGH);//The buzzer sounded

} else {//No obstacles detected
digitalWrite(4, LOW);//The buzzer is off

}
delay(100);//Delay 100ms

}
//**

Code Explanation
Set IO ports according to connection diagram then configure pins mode

The value is 0 when pressing the button, So, we can determine the key value(0through if (item == 0) and make the
buzzer beep digitalWrite(4, HIGH).

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. If the obstacle is detected, the active buzzer will chime;
if not, it won’t beep.

7.6.3 Project 47: Intrusion Detection

Description

800 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

In this experiment, we use a PIR motion sensor to control an active buzzer to emit sounds and the onboard LED to flash
rapidly.

Required Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY PIR Motion
Sensor*1

Keyestudio DIY Active
Buzzer*1

Keyestudio Purple LED
Module*1

3P Dupont Wire*3 Micro USB Cable*1

Connection Diagram

Test Code

//**
/*
* Filename : PIR alarm
* Description : PIR control buzzer
* Auther : http//www.keyestudio.com
*/

(continues on next page)

7.6. 6. Comprehensive Projects: 801

keyestudio WiKi

(continued from previous page)

int item = 0;
void setup() {
pinMode(15, INPUT); //PIR motion sensor is connected to GPIO15 and set as the input␣

→˓mode
pinMode(4, OUTPUT);//The active buzzer is connected to GPIO4 and set to output mode
pinMode(22, OUTPUT);//LED is connected to GPIO22 and set to output mode

}

void loop() {
item = digitalRead(15);//Read digital level signal output by infrared pyrorelease␣

→˓sensor
if (item == 1) { //Movement detected

digitalWrite(4, HIGH); //Turn on the buzzer
digitalWrite(22, HIGH); //Turn on the LED
delay(200);//Delay 200ms
digitalWrite(4, LOW); //Turn off the buzzer
digitalWrite(22, LOW); //Turn off the LED
delay(200);//Delay 200ms

} else { //No detection
digitalWrite(4, LOW); //Turn off the buzzer
digitalWrite(22, LOW); //Turn off the LED

}
}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. If the sensor detects people moving, the buzzer will emit
an alarm , and the LED will flash continuously.

7.6.4 Project 48: Extinguishing Robot

Description
Today we will use Arduino simulation to build an extinguishing robot that will automatically sense the fire and start
the fan.

In this project, we will learn how to build a very simple robot using ESP32, (detecting flames with a flame sensor,
blowing out candles with a fan) can teach us basic concepts about robotics. Once you understand the basics below, you
can build more complex robots.

Components Required

802 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 130 Motor*1

Flame Sensor*1 Battery Holder*1 Battery(privode for yourself)*6

3P Dupont Wire*1 4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

7.6. 6. Comprehensive Projects: 803

keyestudio WiKi

Test Code

//**
/*
* Filename : Fire-fighting robot
* Description : Flame sensor controls the 130 fan module
* Auther : http//www.keyestudio.com
*/
int item = 0;
void setup() {
Serial.begin(9600);
pinMode(15, OUTPUT);//INA corresponds to IN+, and sets GPIO15 to output mode
pinMode(4, OUTPUT);//INB corresponds to IN-, and sets GPIO4 to output mode

}

void loop() {
item = analogRead(34);//The flame sensor is connected to GPIO34, and read the␣

→˓simulated value to Item
Serial.println(item);//Serial port display analog value
if (item < 3000) {//Less than 3000

digitalWrite(15, LOW);//Turn on the fan
digitalWrite(4, HIGH);

} else {//Otherwise, turn off the fan.
digitalWrite(15, LOW);
digitalWrite(4, LOW);

}
delay(100);

}
//**

Code Explanation
In the code, we set the threshold value to 3000. When the ADC value detected by the flame sensor is lower than the
threshold value, the fan will be automatically turned on; otherwise, it will be turned off. For the driving method of the
fan, please refer to the 130 Motor.

Test Result
Connect the wires according to the experimental wiring diagram, switch the DIP switch on the ESP32 expansion board
to the ON end and power up, compile and upload the code to the ESP32. After uploading successfully, open the serial
monitor and set baud rate to 9600.

We need to press the reset button on the ESP32, then the ADC value of the flame will be printed. When this value is
less than 3000, the fan will work to blow out the fire, otherwise, it will be turned off. Basically, the ADC value can be
set by yourself.

804 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.6.5 Project 49: Rotary Encoder control RGB

Introduction
In this lesson, we will control the LED on the RGB module to show different colors through a rotary encoder.

When designing the code, we need to divide the obtained values by 3 to get the remainders. The remainder is 0 and the
LED will become red. The remainder is 1, the LED will become green. The remainder is 2, the LED will turn blue.

7.6. 6. Comprehensive Projects: 805

keyestudio WiKi

Components

ESP32Board*1 ESP32 Expansion
Board*1

KeyestudioCommon Cathode
RGB Module*1

KeyestudioRotary En-
coder Module*1

5P Dupont Wire*1 4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

806 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

//**
/*
* Filename : Encoder control RGB
* Description : Rotary encoder controls RGB to present different effects
* Auther : http//www.keyestudio.com
*/
//Interfacing Rotary Encoder with Arduino
//Encoder Switch -> pin 27
//Encoder DT -> pin 14
//Encoder CLK -> pin 12
int Encoder_DT = 14;
int Encoder_CLK = 12;
int Encoder_Switch = 27;

int Previous_Output;
int Encoder_Count;

int ledPins[] = {0, 2, 15}; //define red, green, blue led pins
const byte chns[] = {0, 1, 2}; //define the pwm channels
int red, green, blue;

int val;
void setup() {
Serial.begin(9600);

//pin Mode declaration
pinMode (Encoder_DT, INPUT);
pinMode (Encoder_CLK, INPUT);
pinMode (Encoder_Switch, INPUT);

Previous_Output = digitalRead(Encoder_DT); //Read the inital value of Output A
for (int i = 0; i < 3; i++) { //setup the pwm channels,1KHz,8bit
ledcSetup(chns[i], 1000, 8);
ledcAttachPin(ledPins[i], chns[i]);
}

}

void loop() {
//aVal = digitalRead(pinA);

if (digitalRead(Encoder_DT) != Previous_Output)
{
if (digitalRead(Encoder_CLK) != Previous_Output)
{
Encoder_Count ++;
Serial.print(Encoder_Count);
Serial.print(" ");
val = Encoder_Count % 3;
Serial.println(val);

}
else
{
Encoder_Count--;

(continues on next page)

7.6. 6. Comprehensive Projects: 807

keyestudio WiKi

(continued from previous page)

Serial.print(Encoder_Count);
Serial.print(" ");
val = Encoder_Count % 3;
Serial.println(val);

}
}

Previous_Output = digitalRead(Encoder_DT);

if (digitalRead(Encoder_Switch) == 0)
{
delay(5);
if (digitalRead(Encoder_Switch) == 0) {
Serial.println("Switch pressed");
while (digitalRead(Encoder_Switch) == 0);

}
}
if (val == 0) {
//RED(255, 0, 0)
ledcWrite(chns[0], 255);
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 0);

} else if (val == 1) {
//GREEN(0, 255, 0)
ledcWrite(chns[0], 0);
ledcWrite(chns[1], 255);
ledcWrite(chns[2], 0);

} else {
//BLUE(0, 0, 255)
ledcWrite(chns[0], 0);
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 255);

}
}
//**

Code Explanation
1). In the experiment, we set the val to the remainder of Encoder_Count divided by 3. Encoder_Count is the value of
the encoder. Then we can set pin GPIO0 (red), GPIO2 (green) and GPIO15 (blue) according to remainders.

2). Referring to the control method learned in the previous experiment, use the LED on the remainder control module
to display the corresponding light color. The value obtained by taking the remainder of 3 for any number is 0 or 1 or 2.
We use these three values to judge, and display the corresponding color.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. Open the serial monitor and set the baud rate to 9600.
We need to press the reset button on the ESP32, then rotate the knob of the rotary encoder to display the reminders,
which can control colors of LED(red green blue).

808 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.6.6 Project 50: Rotary Potentiometer

Introduction
In the previous courses, we did experiments of breathing light and controlling LED with button. In this course, we do
these two experiments by controlling the brightness of LED through an adjustable potentiometer. The brightness of
LED is controlled by PWM values, and the range of analog values is 0 to 4095 and the PWM value range is 0-255.

After the code is set successfully, we can control the brightness of the LED on the module by rotating the potentiometer.

Required Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Purple LED*1

Keyestudio Rotary Potentiometer*1 3P Dupont Wire*2 Micro USB Cable*1

Connection Diagram

7.6. 6. Comprehensive Projects: 809

keyestudio WiKi

Test Code

//**
/*
* Filename : adjust the light
* Description : Controlling the brightness of LED by potentiometer.
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 34 //the pin of the potentiometer
#define PIN_LED 15 // the pin of the LED
#define CHAN 0
void setup() {
ledcSetup(CHAN, 1000, 12);
ledcAttachPin(PIN_LED, CHAN);

}

void loop() {
int adcVal = analogRead(PIN_ANALOG_IN); //read adc
int pwmVal = adcVal; // adcVal re-map to pwmVal
ledcWrite(CHAN, pwmVal); // set the pulse width.
delay(10);

}
//**

Code Explanation
In the experiment, the mapping function maps adcVal from the range of 0-4095 to 0-255, and assigns it to pwmVal.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. Rotating the potentiometer on the module can adjust the
brightness of the LED on the LED module.

810 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.6.7 Project 51: Smart Windows

Description
In life, we can see all kinds of smart products, such as smart home. Smart homes include smart curtains, smart windows,
smart TVs, smart lights, and more. In this experiment, we use a steam sensor to detect rainwater, and then achieve the
effect of closing and opening the window by a servo.

Required Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Steam Sensor*1

Servo*1 3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

7.6. 6. Comprehensive Projects: 811

keyestudio WiKi

Test Code

//**
/*
* Filename : smart window
* Description : Water drop sensor controls steering gear rotation.
* Auther : http//www.keyestudio.com
*/
#include <ESP32Servo.h>//Import the steering gear library file
int adcVal = 0;//A variable that holds the ADC value output by the droplet sensor
int servoPin = 15; // Define the servo pin
Servo myservo;//Defines an instance of the steering gear class

#define PIN_ADC 34 //the pin of the Water drop sensor

void setup(){
Serial.begin(9600);
pinMode(PIN_ADC, INPUT);
myservo.setPeriodHertz(50); // standard 50 hz servo
myservo.attach(servoPin, 500, 2500); // attaches the servo on servoPin to the servo␣

→˓object
}

void loop(){
adcVal = analogRead(PIN_ADC);//The droplet sensor is connected to the analog port GP34
Serial.println(adcVal);
if (adcVal > 2000) {//The simulated value is greater than 2000
myservo.write(0);//close the window
delay(500);//Give the steering gear time to turn

} else {// no rain
(continues on next page)

812 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

myservo.write(180);//open the window
delay(500);//Delay 500ms

}
}
//**

Code Explanation
We can control a servo to rotate by a threshold.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. When the sensor detects a certain amount of water, the
servo rotates to achieve the effect of closing or opening windows.

7.6.8 Project 52: Sound Activated Light

Introduction

7.6. 6. Comprehensive Projects: 813

keyestudio WiKi

In this lesson, we will make a smart sound activated light using a sound sensor and an LED module. When we make
a sound, the light will automatically turn on; when there is no sound, the lights will automatically turn off. How it
works? Because the sound-controlled light is equipped with a sound sensor, and this sensor converts the intensity of
external sound into a corresponding value. Then set a threshold, when the threshold is exceeded, the light will turn on,
and when it is not exceeded, the light will go out.

Components

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio Sound Sensor*1

Keyestudio Purple LED Module*1 3P Dupont Wire*2 Micro USB Cable*1

Connection Diagram

Test Code

814 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

//**
/*
* Filename : sound-controlled lights
* Description : Sound sensor controls LED on and off
* Auther : http//www.keyestudio.com
*/
int ledPin = 15;//LED is connected to GP15
int microPin = 34;//Sound sensor is connected to GPIO34
void setup() {
Serial.begin(9600);//Set baud rate to 9600
pinMode(ledPin, OUTPUT);//LED is the output mode

}

void loop() {
int val = analogRead(microPin);//Read analog value
Serial.print(val);// Serial port print
if(val > 600){//exceed the threshold value
digitalWrite(ledPin, HIGH);//Lighting LED 3sand print the corresponding information
Serial.println(" led on");
delay(3000);

}else{//otherwise
digitalWrite(ledPin, LOW);//Turn off the LED and print the corresponding information
Serial.println(" led off");

}
delay(100);

}
//**

Code Explanation
We set the ADC threshold value to 600. If more than 600, LED will be on 3s; on the contrary, it will be off.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set the baud rate to 9600.

We need to press the reset button on the ESP32, then the corresponding volume ADC value will be displayed. When
the analog value of sound is greater than 600, the LED on the LED module will light up 3s, otherwise it will go off.

7.6. 6. Comprehensive Projects: 815

keyestudio WiKi

7.6.9 Project 53: Fire Alarm

Description
In this experiment, we will make a fire alarm system. Just use a flame sensor to control an active buzzer to emit sounds.

Required Components

816 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio DIY Active Buzzer*1

Micro USB Cable*1 3P Dupont Wire*2 keyestudio DIY Flame Sensor*1

Connection Diagram

Test Code

//**
/*
* Filename : Flame Alarm
* Description : Controlling the buzzer by flame sensor.
* Auther : http//www.keyestudio.com
*/
int item = 0;
void setup() {

(continues on next page)

7.6. 6. Comprehensive Projects: 817

keyestudio WiKi

(continued from previous page)

Serial.begin(9600);
pinMode(4, INPUT);//Flame sensor digital pin is connected to GPIO4
pinMode(15, OUTPUT);//Buzzer pin is connected to GPIO15

}

void loop() {
item = digitalRead(4);//Read the digital level output by the flame sensor
Serial.println(item);//Newline print level signal
if (item == 0) {//Flame detected

digitalWrite(15, HIGH);//Turn on the buzzer
} else {//Otherwise, turn off the buzzer
digitalWrite(15, LOW);

}
delay(100);//Delay 100ms

}
//**

Code Explanation
This flame sensor uses an analog pin and a digital pin. When a flame is detected, the digital pin outputs a low level. In
this experiment we will use the digital port.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. When the sensor detects the flame, the external active
buzzer will emit sounds, otherwise the active buzzer will not emit sounds.

818 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.6.10 Project 54: Smoke Alarm

Description
In this experiment, we will make a smoke alarm by a TM16504-Digit segment module, a gas sensor and an active
buzzer.

Required Components

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio Active
Buzzer*1

Keyestudio TM16504-Digit Seg-
ment Module*1

keyestudio Analog Gas
Senso*1

3P Dupont Wire*2 4P Dupont Wire*1 Micro USB Cable*1

7.6. 6. Comprehensive Projects: 819

keyestudio WiKi

Connection Diagram

Test Code

//**
/*
* Filename : smoke alarm
* Description : MQ2 controls a buzzer and a four-digit analog smoke tester
* Auther : http//www.keyestudio.com
*/
#include "TM1650.h" //Import the TM1650 library file
int adcVal = 0; //display ADC value
//the interfaces are GPIO21 and GPIO22
#define DIO 21
#define CLK 22
TM1650 DigitalTube(CLK,DIO);

void setup() {
DigitalTube.setBrightness(); //set brightness, 0---7, default : 2
DigitalTube.displayOnOFF(); //display on or off, 0=display off, 1=display on,␣

→˓default : 1
for(char b=1;b<5;b++){

DigitalTube.clearBit(b); //DigitalTube.clearBit(0 to 3); Clear bit display.
}
// DigitalTube.displayDot(1,true); //Bit0 display dot. Use before displayBit().
DigitalTube.displayBit(1,0); //DigitalTube.Display(bit,number); bit=0---3 number=0-

→˓--9
pinMode(15, OUTPUT);//the buzzer is connected to GPIO15

}

void loop() {
(continues on next page)

820 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

adcVal = analogRead(34);//Read the ADC values of MQ2
displayFloatNum(adcVal);;//Four digit tube display adcVal values
if (adcVal > 1000) {//ADC value is greater than 1000
digitalWrite(15, HIGH); // buzzer alarming

} else {//or else
digitalWrite(15, LOW); //Turn off the buzzer

}
delay(100);//delay 100ms

}

void displayFloatNum(float adcVal){
if(adcVal > 9999)
return;

int dat = adcVal*10;
//DigitalTube.displayDot(2,true); //Bit0 display dot. Use before displayBit().
if(dat/10000 != 0){
DigitalTube.displayBit(1, dat%100000/10000);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%10000/1000 != 0){
DigitalTube.clearBit(1);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%1000/100 != 0){
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.clearBit(3);
DigitalTube.displayBit(4, dat%100/10);

}
//**

Code Explanation
Define an integer variable val to store the analog value of thesmoke sensor, and then we display the analog value in the
four-digit digital tube, and then set a threshold, and when the threshold is reached, the buzzer will sound.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. When the concentration of combustible gas exceeds
the standard, the active buzzer module will give an alarm, and the four-digit digital tube will display the concentration
value.

7.6. 6. Comprehensive Projects: 821

keyestudio WiKi

7.6.11 Project 55: Alcohol Sensor

Description
In the last experiment, we made a smoke alarm. In this experiment, we combine the active buzzer, the MQ-3 alcohol
sensor, and a four-digit digital tube to test the alcohol concentration through the alcohol sensor. Then, the concentration
to control the active buzzer alarm and the four-digit digital tube to display the concentration. So as to achieve the
simulation effect of alcohol detector.

Components Required

ESP32 Board*1 ESP32 Expansion
Board*1

Active Buzzer*1 Keyestudio DIY TM1650 4-Digit
Tube Display*1

keyestudio Alcohol Sen-
sor*1

3P Dupont Wire*2 4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

822 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : breathalyzer
* Description : MQ3 controls a buzzer and a four-digit tube to simulate a breathalyzer.
* Auther : http//www.keyestudio.com
*/
#include "TM1650.h" //Import the TM1650 library file
int adcVal = 0; //display ADC value
//the interfaces are GPIO21 and GPIO22
#define DIO 21
#define CLK 22
TM1650 DigitalTube(CLK,DIO);

void setup() {
DigitalTube.setBrightness(); //set brightness, 0---7, default : 2
DigitalTube.displayOnOFF(); //display on or off, 0=display off, 1=display on,␣

→˓default : 1
for(char b=1;b<5;b++){

DigitalTube.clearBit(b); //DigitalTube.clearBit(0 to 3); Clear bit display.
}
// DigitalTube.displayDot(1,true); //Bit0 display dot. Use before displayBit().
DigitalTube.displayBit(1,0); //DigitalTube.Display(bit,number); bit=0---3 number=0-

→˓--9
pinMode(15, OUTPUT);//the buzzer is connected to GPIO15

}

void loop() {
adcVal = analogRead(34);//Read the ADC values of MQ3
displayFloatNum(adcVal);//Four digit tube display adcVal values

(continues on next page)

7.6. 6. Comprehensive Projects: 823

keyestudio WiKi

(continued from previous page)

if (adcVal > 1000) {//ADC value is greater than 1000
digitalWrite(15, HIGH); // buzzer alarming

} else {//or else
digitalWrite(15, LOW); //Turn off the buzzer

}
delay(100);//delay 100ms

}

void displayFloatNum(float adcVal){
if(adcVal > 9999)
return;

int dat = adcVal*10;
//DigitalTube.displayDot(2,true); //Bit0 display dot. Use before displayBit().
if(dat/10000 != 0){
DigitalTube.displayBit(1, dat%100000/10000);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%10000/1000 != 0){
DigitalTube.clearBit(1);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%1000/100 != 0){
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.clearBit(3);
DigitalTube.displayBit(4, dat%100/10);

}
//**

Code Explanation
Define an integer variable val to store the ADC value of the alcohol sensor, then we display the analog value in the
four-digit display module and set a threshold.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. When different alcohol concentrations are detected, the
active buzzer module will alarm, and the four-digit digital display will show the concentration value.

824 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.6.12 Project 56: Ultrasonic Radar

Description

We know that bats use echoes to determine the direction and the location of their preys. In real life, sonar is used to
detect sounds in the water. Since the attenuation rate of electromagnetic waves in water is very high, it cannot be used
to detect signals, however, the attenuation rate of sound waves in the water is much smaller, so sound waves are most
commonly used underwater for observation and measurement.

In this experiment, we will use a speaker module, an RGB module and a 4-digit tube display to make a device for
detection through ultrasonic.

Required Components

7.6. 6. Comprehensive Projects: 825

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion Board*1 Keyestudio HC-SR04 Ultrasonic Sen-
sor*1

Keyestudio 8002b Power
Amplifier*1

Keyestudio DIY Common Cathode RGB
Module *1

Keyestudio DIY TM1650 4-Digit Tube
Display*1

4P Dupont Wire*3 3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code

826 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

//**
/*
* Filename : Ultrasonic radar
* Description : Ultrasonic control four digit tube, buzzer and RGB analog ultrasonic␣
→˓radar.
* Auther : http//www.keyestudio.com
*/
#include "TM1650.h" //Import the TM1650 library file
//the interfaces are GPIO21 and GPIO22
#define DIO 21
#define CLK 22
TM1650 DigitalTube(CLK,DIO);

int beeppin = 18; //Define the horn pin as GPIO18

int TrigPin = 13; //Set the Trig pin to GPIO13
int EchoPin = 14; //Set the Echo pin to GPIO14
int distance;//Distance measured by ultrasound

int ledPins[] = {0, 2, 15}; //define red, green, blue led pins
const byte chns[] = {0, 1, 2}; //define the pwm channels

float checkdistance() { //get distance
// A short low level is given beforehand to ensure a clean high pulse:
digitalWrite(TrigPin, LOW);
delayMicroseconds(2);
// The sensor is triggered by a high pulse of 10 microseconds or more
digitalWrite(TrigPin, HIGH);
delayMicroseconds(10);
digitalWrite(TrigPin, LOW);
// Read the signal from the sensor: a high level pulse
//Its duration is the time (in microseconds) from sending the ping command to␣

→˓receiving the echo from the object
float distance = pulseIn(EchoPin, HIGH) / 58.00; //Convert to distance
delay(10);
return distance;

}

void setup() {
DigitalTube.setBrightness(); //set brightness, 0---7, default : 2
DigitalTube.displayOnOFF(); //display on or off, 0=display off, 1=display on,␣

→˓default : 1
for(char b=1;b<5;b++){

DigitalTube.clearBit(b); //DigitalTube.clearBit(0 to 3); Clear bit display.
}
// DigitalTube.displayDot(1,true); //Bit0 display dot. Use before displayBit().
DigitalTube.displayBit(1,0); //DigitalTube.Display(bit,number); bit=0---3 number=0-

→˓--9
pinMode(TrigPin, OUTPUT);//Sets the Trig pin as output
pinMode(EchoPin, INPUT); //Set the Echo pin as input
ledcSetup(3, 1000, 8);//setup the pwm channels,1KHz,8bit
ledcAttachPin(18, 3);
for (int i = 0; i < 3; i++) { //setup the pwm channels,1KHz,8bit

(continues on next page)

7.6. 6. Comprehensive Projects: 827

keyestudio WiKi

(continued from previous page)

ledcSetup(chns[i], 1000, 8);
ledcAttachPin(ledPins[i], chns[i]);

}
}

void loop() {
distance = checkdistance(); //Ultrasonic ranging
displayFloatNum(distance); //Nixie tube shows distance
if (distance <= 10) {
ledcWrite(3, 100);
delay(100);
ledcWrite(3, 0);
ledcWrite(chns[0], 255); //Common cathode LED, high level to turn on the led.
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 0);

} else if (distance > 10 && distance <= 20) {
ledcWrite(3, 200);
delay(200);
ledcWrite(3, 150);
ledcWrite(chns[0], 0);
ledcWrite(chns[1], 255);
ledcWrite(chns[2], 0);

} else {
ledcWrite(3, 0);
ledcWrite(chns[0], 0);
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 255);

}
}

void displayFloatNum(float distance){
if(distance > 9999)
return;

int dat = distance*10;
//DigitalTube.displayDot(2,true); //Bit0 display dot. Use before displayBit().
if(dat/10000 != 0){
DigitalTube.displayBit(1, dat%100000/10000);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%10000/1000 != 0){
DigitalTube.clearBit(1);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%1000/100 != 0){
DigitalTube.clearBit(1);

(continues on next page)

828 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

DigitalTube.clearBit(2);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.clearBit(3);
DigitalTube.displayBit(4, dat%100/10);

}
//**

Code Explanation
We set sound frequency and light color by adjusting different distance range.

We can adjust the distance range in the code.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. When the ultrasonic sensor detects different distances,
the buzzer will produce different frequencies of sound (within 20 cm) , the RGB will show different colors, and the
measured distances are displayed on the 4-digit tube display.

7.6. 6. Comprehensive Projects: 829

keyestudio WiKi

7.6.13 Project 57: IR Remote Control

Introduction
In the previous experiments, we learned how to turn on/off the LED and adjust its brightness via PWM and print the but-
ton value of the IR remote control in the serial monitor window. Herein, we use an infrared remote control to turn
on/off an LED.

Components

830 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY Purple LED
Module*1

Keyestudio DIY IR Re-
ceiver*1

Micro USB Cable*1 IR Remote Control*1 3P Dupont Wire*2

Connection Diagram

Test Code

//**
/*
* Filename : IR Control LED
* Description : Remote controls LED on and off
* Auther : http//www.keyestudio.com
*/
#include <Arduino.h>
#include <IRremoteESP8266.h>
#include <IRrecv.h>

(continues on next page)

7.6. 6. Comprehensive Projects: 831

keyestudio WiKi

(continued from previous page)

#include <IRutils.h>

const uint16_t recvPin = 15; // Infrared receiving pin 15
IRrecv irrecv(recvPin); // Create a class object used to receive class
decode_results results; // Create a decoding results class object
int led = 4;//LED connect to GP4

void setup() {
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
pinMode(led, OUTPUT);

}
////////////////////
void loop() {
if(irrecv.decode(&results)) { // Waiting for decoding
serialPrintUint64(results.value, HEX);// Print out the decoded results
Serial.print("");
handleControl(results.value); // Handle the commands from remote control
irrecv.resume(); // Receive the next value

}
}
void handleControl(unsigned long value) {
if (value == 0xFF6897) // Receive the number '1'
{
digitalWrite(led, HIGH);//turn on LED
Serial.println(" led on");

}
else if (value == 0xFF9867) // Receive the number '2'
{

digitalWrite(led, LOW);//turn off LED
Serial.println(" led off");

}
}
//**

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. Open the serial monitor and set the baud rate to 9600.
We need to press the reset button on the ESP32, then press the button 1 of the remote, which will be displayed on the
monitor, and the LED will be on. Similarly, press the button 2 , the LED will be off.

832 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.6. 6. Comprehensive Projects: 833

keyestudio WiKi

7.6.14 Project 58: Heat Dissipation Device

Description
We will use a temperature sensor and some modules to make a smart cooling device in this experiment. When the
ambient temperature is higher than a certain value, the motor is turned on, thereby reducing the ambient temperature
and achieving the heat dissipation effect. Then display the temperature value in the four-digit segment display.

Required Components

834 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion
Board*1

keyestudio 130 Mo-
tor*1

Keyestudio TM1650 4-Digit
Segment Display*1

Keyestudio 18B20 Temper-
ature Sensor*1

3P Dupont Wire*1 4P Dupont Wire*2 Micro USB Cable*1

Battery Holder*1 Battery (provide for
yourself)*6

Connection Diagram

7.6. 6. Comprehensive Projects: 835

keyestudio WiKi

Test Code

//**
/*
* Filename : heat abstractor
* Description : DS18B20 controls a four digit tube and a motor that simulates Heat␣
→˓Abstractor
* Auther : http//www.keyestudio.com
*/
#include <DS18B20.h>
#include "TM1650.h" //Import the TM1650 library file
//The two ports are GP21 and GP22
#define DIO 21
#define CLK 22
TM1650 DigitalTube(CLK,DIO);

(continues on next page)

836 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

//ds18b20 pin to 13
DS18B20 ds18b20(13);
void setup() {
Serial.begin(9600);
DigitalTube.setBrightness(); //set brightness, 0---7, default : 2
DigitalTube.displayOnOFF(); //display on or off, 0=display off, 1=display on,␣

→˓default : 1
for(char b=1;b<5;b++){

DigitalTube.clearBit(b); //DigitalTube.clearBit(0 to 3); Clear bit display.
}
// DigitalTube.displayDot(1,true); //Bit0 display dot. Use before displayBit().
DigitalTube.displayBit(1,0); //DigitalTube.Display(bit,number); bit=0---3 number=0-

→˓--9
//Motor is connected to 15 4
pinMode(15, OUTPUT);
pinMode(4, OUTPUT);

}

void loop() {
double temp = ds18b20.GetTemp();//Read the temperature
temp *= 0.0625;//The conversion accuracy is 0.0625/LSB
Serial.println(temp);
displayFloatNum(temp);//4- digit tube display temperature value
if (temp > 25) {//When the temperature exceeds 25 degrees Celsius, turn on the fan

digitalWrite(15, LOW);
digitalWrite(4, HIGH);

} else {//Otherwise, turn off the fan.
digitalWrite(15, LOW);
digitalWrite(4, LOW);

}
delay(100);

}

void displayFloatNum(float temp){
if(temp > 9999)
return;

int dat = temp*10;
//DigitalTube.displayDot(2,true); //Bit0 display dot. Use before displayBit().
if(dat/10000 != 0){
DigitalTube.displayBit(1, dat%100000/10000);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
if(dat%10000/1000 != 0){
DigitalTube.clearBit(1);
DigitalTube.displayBit(2, dat%10000/1000);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}

(continues on next page)

7.6. 6. Comprehensive Projects: 837

keyestudio WiKi

(continued from previous page)

if(dat%1000/100 != 0){
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.displayBit(3, dat%1000/100);
DigitalTube.displayBit(4, dat%100/10);
return;

}
DigitalTube.clearBit(1);
DigitalTube.clearBit(2);
DigitalTube.clearBit(3);
DigitalTube.displayBit(4, dat%100/10);

}
//**

Code Explanation
The setting of variables and the storage of detection values are the same as what we learned earlier. We also set a
temperature threshold and control the rotation of the motor when the threshold is exceeded, and then we use the digital
tube to display the temperature value.

Test Result
Connect the wires according to the experimental wiring diagram and power on. Switch the DIP switch on the ESP32
expansion board to the ON end, compile and upload the code to the ESP32. After uploading successfully, we can see
the temperature of the current environment (unit is Celsius) on the four-digit segment display, as shown in the figure
below. If this value exceeds the value we set, the fan will rotate to dissipate heat.

7.6.15 Project 59: Intelligent Entrance Guard System

Description
In this project, we use the RFID522 card swiping module and the servo to set up an intelligent access control system.
The principle is very simple. We use RFID522 swipe card module, an IC card or key card to unlock.

Required Components

838 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion
Board*1

Key*1 IC Card*1

Keyestudio RFID Module*1 Servo*1 4P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

Test Code
Note: Different RFID-MFRC522 IC cards and keys have diverse values.You can substitute your own IC cards and keys
values for the corresponding values read by the RFID-MFRC522 module in the program, otherwise the servo can’t be
controlled when uploading the test code to the ESP32.

For example: You can replace the rfid_str of the

7.6. 6. Comprehensive Projects: 839

keyestudio WiKi

in the program code with your own IC cards and keys values read by the RFID-MFRC522 module.

//***
/*
* Filename : Intelligent_access_control
* Description : RFID controlled steering gear simulated door opening
* Auther : http//www.keyestudio.com
*/
#include <Wire.h>
#include "MFRC522_I2C.h"
// IIC pins default to GPIO21 and GPIO22 of ESP32
// 0x28 is the i2c address of SDA, if doesn't matchplease check your address with i2c.
MFRC522 mfrc522(0x28); // create MFRC522.

#include <ESP32Servo.h>
Servo myservo; // create servo object to control a servo
int servoPin = 15; // Servo motor pin

String rfid_str = "";

void setup() {
Serial.begin(9600);
Wire.begin();
mfrc522.PCD_Init();
ShowReaderDetails(); // dispaly PCD - MFRC522 read carder
Serial.println(F("Scan PICC to see UID, type, and data blocks..."));

myservo.setPeriodHertz(50); // standard 50 hz servo
myservo.attach(servoPin, 500, 2500); // attaches the servo on servoPin to the servo␣

→˓object
myservo.write(0);
delay(500);

}

void loop() {
if (! mfrc522.PICC_IsNewCardPresent() || ! mfrc522.PICC_ReadCardSerial()) {
delay(50);
return;

}

// select one of door cards. UID and SAK are mfrc522.uid.

// save UID
rfid_str = ""; //String emptying
Serial.print(F("Card UID:"));
for (byte i = 0; i < mfrc522.uid.size; i++) {
rfid_str = rfid_str + String(mfrc522.uid.uidByte[i], HEX); //Convert to string
//Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ");
//Serial.print(mfrc522.uid.uidByte[i], HEX);

}
Serial.println(rfid_str);

if (rfid_str == "edf7945a" || rfid_str == "4c96b6e") {
(continues on next page)

840 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

myservo.write(180);
delay(500);
Serial.println(" open the door!");
}

}

void ShowReaderDetails() {
// attain the MFRC522 software
byte v = mfrc522.PCD_ReadRegister(mfrc522.VersionReg);
Serial.print(F("MFRC522 Software Version: 0x"));
Serial.print(v, HEX);
if (v == 0x91)
Serial.print(F(" = v1.0"));

else if (v == 0x92)
Serial.print(F(" = v2.0"));

else
Serial.print(F(" (unknown)"));

Serial.println("");
// when returning to 0x00 or 0xFF, may fail to transmit communication signals
if ((v == 0x00) || (v == 0xFF)) {
Serial.println(F("WARNING: Communication failure, is the MFRC522 properly connected?

→˓"));
}

}
//**

Code Explanation
In the previous experiment, our card swipe module has tested the information of IC card and key. Then we use this
corresponding information to control the door.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set the baud rate to 9600.

We need to press the reset button on the ESP32, when we use the IC card or blue key to swipe the card, the monitor
displays the card and the key information and “open the door”, at the same time, the servo rotates to the corresponding
angle to simulate opening the door.

7.6. 6. Comprehensive Projects: 841

keyestudio WiKi

7.6.16 Project 60Bluetooth

This chapter mainly introduces how to use the bluetooth of ESP32 for simple data transmission with mobile phone.
Project 60.1 is conventional bluetooth, and Project 60.2 is bluetooth control LED.

Project 60.1Classic Bluetooth

Components

USB Cable*1 ESP32*1

In this experiment, we need to use a bluetooth dobbed serial bluetooth terminal for a study. If you haven’t install it,
please click the installation: https://www.appsapk.com/serial-bluetooth-terminal/.

Here is its sign:

Component Knowledge
Bluetooth is a short-distance communication system that can be divided into two types, namely low power bluetooth
(BLE) and classic bluetooth. There are two modes for simple data transfer: master mode and slave mode.

Master Mode: In this mode, work is done on the master device and can be connected to the slave device. When the
device initiates a connection request in the main mode, information such as the address and pairing password of other
bluetooth devices are required. Once paired, you can connect directly to them.

842 Chapter 7. Arduino(Raspberry-Pi) tutorial

https://www.appsapk.com/serial-bluetooth-terminal/

keyestudio WiKi

Slave Mode: A bluetooth module in the slave mode can only accept connection requests from the host, but cannot
initiate connection requests. After being connected to a host device, it can send and receive data through the host
device . Bluetooth devices can interact with each other, when they interact, the bluetooth device in the main mode
searches for nearby devices. While a connection is established, they can exchange data. For example, when a mobile
phone exchanges data with ESP32, the mobile phone is usually in master mode and the ESP32 is in slave mode.

Wiring Diagram
We can use a USB cable to connect ESP32 mainboard to the USB port on the Raspberry Pi.

Test Code

//**
/*
* Filename : Classic Bluetooth
* Description : ESP32 communicates with the phone by bluetooth and print phone's data␣
→˓via a serial port
* Auther : http//www.keyestudio.com
*/
#include "BluetoothSerial.h"

BluetoothSerial SerialBT;
String buffer;
void setup() {
Serial.begin(115200);

(continues on next page)

7.6. 6. Comprehensive Projects: 843

keyestudio WiKi

(continued from previous page)

SerialBT.begin("ESP32test"); //Bluetooth device name
Serial.println("\nThe device started, now you can pair it with bluetooth!");

}

void loop() {
if (Serial.available()) {
SerialBT.write(Serial.read());

}
if (SerialBT.available()) {
Serial.write(SerialBT.read());

}
delay(20);

}
//**

Test Result
Compile and upload the code to the ESP32. After uploading successfullywe will use a USB cable to power on. Open
the serial monitor and set the baud rate to 115200. We need to press the reset button on the ESP32, when you see the
serial prints the character, as shown below, it means that the ESP32’s bluetooth is waiting for connection with a phone.
(If open the serial monitor and set the baud rate to 115200, the information is not displayed, please press the button
RESET of the ESP32)

Ensure that your mobile phone bluetooth is enabled and the bluetooth application of “Serial Bluetooth Terminal” is
installed.

844 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Click“Search”search for the nearby bluetooth and select to connect the“ESP32 test”.

Open the software APP and click the left side of the terminal, select “Devices”.

7.6. 6. Comprehensive Projects: 845

keyestudio WiKi

If you select ESP32test in classic bluetooth mode, a successful connection message will appear as shown below.

Data can be transferred between your phone and Raspberry Pi via ESP32 now.

Send “Hello”, When the Raspberry Pi receives it, which will reply with “Hi!”.

846 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Project 60.2Bluetooth Control LED

Components

ESP32*1 ESP32 Expansion Board*1 MicroUSB Cable*1

Keyestudio Purple LED Module*1 3P Dupont*1

7.6. 6. Comprehensive Projects: 847

keyestudio WiKi

Wiring Diagram

Test Code

//**
/*
* Filename : Bluetooth Control LED
* Description : The phone controls esp32's led via bluetooth.

When the phone sends "LED_on," ESP32's LED lights turn on.
When the phone sends "LED_off," ESP32's LED lights turn off.

* Auther : http//www.keyestudio.com
*/
#include "BluetoothSerial.h"
#include "string.h"
#define LED 15
BluetoothSerial SerialBT;
char buffer[20];
static int count = 0;
void setup() {
pinMode(LED, OUTPUT);
SerialBT.begin("ESP32test"); //Bluetooth device name
Serial.begin(115200);
Serial.println("\nThe device started, now you can pair it with bluetooth!");

}

void loop() {
while(SerialBT.available())

(continues on next page)

848 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

{
buffer[count] = SerialBT.read();
count++;

}
if(count>0){
Serial.print(buffer);
if(strncmp(buffer,"led_on",6)==0){
digitalWrite(LED,HIGH);

}
if(strncmp(buffer,"led_off",7)==0){
digitalWrite(LED,LOW);

}
count=0;
memset(buffer,0,20);

}
}
//***

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. The APP operation is the same as the project 60.1. We
need to press the reset button on the ESP32, if you want to make the external LED on and off, simply change the sending
content to “LED_on” and “LED_Off”. Moving the APP to send data:

The serial monitor will display as follows:

7.6. 6. Comprehensive Projects: 849

keyestudio WiKi

LED Circumstance

850 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Note: If the sent content is not “led_on ‘or” led_off “, the status of the LED will not change. If the LED is on, it remains
on when irrelevant content is received; Conversely, if the LED is off, it continues to be off when irrelevant content is
received.

7.6.17 Project 61WIFI Station Mode

Description
ESP32 has three different WiFi modes: Station mode, AP mode and AP+Station mode. All WiFi programming projects
must be configured with WiFi running mode before using, otherwise the WiFi cannot be used. In this project, we are
going to learn the WiFi Station mode of the ESP32.

Components

Micro USB Cable*1 ESP32 Board*1

Wiring Diagram

7.6. 6. Comprehensive Projects: 851

keyestudio WiKi

Plug the ESP32 to the USB port of your Raspberry Pi.

Component Knowledge
Station mode
When setting Station mode, the ESP32 is taken as a WiFi client. It can connect to the router network and communicate
with other devices on the router via a WiFi connection. As shown in the figure below, the PC and the router have been
connected. If the ESP32 wants to communicate with the PC, the PC and the router need to be connected.

852 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code
Since WiFi names and passwords vary from place to place, thereby users need to enter the correct WiFi names and
passwords in the box shown below before the program code runs.

7.6. 6. Comprehensive Projects: 853

keyestudio WiKi

//**
/*
* Filename : WiFi Station
* Description : Connect to your router using ESP32
* Auther : http//www.keyestudio.com
*/
#include <WiFi.h> //Include the WiFi Library header file of ESP32.

//Enter correct router name and password.
const char *ssid_Router = "ChinaNet-2.4G-0DF0"; //Enter the router name
const char *password_Router = "ChinaNet@233"; //Enter the router password

void setup(){
Serial.begin(115200);
delay(2000);
Serial.println("Setup start");
WiFi.begin(ssid_Router, password_Router);//Set ESP32 in Station mode and connect it to␣

→˓your router.
(continues on next page)

854 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

Serial.println(String("Connecting to ")+ssid_Router);
//Check whether ESP32 has connected to router successfully every 0.5s.
while (WiFi.status() != WL_CONNECTED){

delay(500);
Serial.print(".");

}
Serial.println("\nConnected, IP address: ");
Serial.println(WiFi.localIP());//Serial monitor prints out the IP address assigned to␣

→˓ESP32.
Serial.println("Setup End");

}

void loop() {
}
//**

Test Result
After entering the correct WiFi names and passwords, compile and upload the code to the ESP32. After uploading
successfullywe will use a USB cable to power on. Open the serial monitor and set the baud rate to 115200.

When the ESP32 successfully connects to ssid_WiFi, the serial monitor prints out the IP address, then monitor will
display as follows: (If open the serial monitor and set the baud rate to 115200, the information is not displayed, please
press the button RESET of the ESP32)

7.6. 6. Comprehensive Projects: 855

keyestudio WiKi

7.6.18 Project 62WIFI AP Mode

Description
ESP32 has three different WiFi modes: Station mode, AP mode and AP+Station mode. All WiFi programming projects
must be configured with WiFi running mode before using, otherwise the WiFi cannot be used. In this project, we are
going to learn the WiFi AP mode of the ESP32.

Components

Micro USB Cable*1 ESP32*1

Wiring Diagram
Plug the ESP32 mainboard to the USB port of your Raspberry Pi

Component Knowledge
AP Mode:
When setting AP mode, a hotspot network will be created, waiting for other WiFi devices to connect. As shown below;

Take the ESP32 as the hotspot, if a phone or PC needs to communicate with the ESP32, it must be connected to the
ESP32’s hotspot. Communication is only possible after a connection is established via the ESP32.

856 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code
Before the program code runs, you can make any changes to the ESP32 AP name and password in the box as shown
below, but in a default circumstance, it doesn’t need to modify.

7.6. 6. Comprehensive Projects: 857

keyestudio WiKi

//**
/*
* Filename : WiFi AP
* Description : Set ESP32 to open an access point
* Auther : http//www.keyestudio.com
*/
#include <WiFi.h> //Include the WiFi Library header file of ESP32.

const char *ssid_AP = "ESP32_Wifi"; //Enter the router name
const char *password_AP = "12345678"; //Enter the router password

IPAddress local_IP(192,168,1,108);//Set the IP address of ESP32 itself
IPAddress gateway(192,168,1,1); //Set the gateway of ESP32 itself
IPAddress subnet(255,255,255,0); //Set the subnet mask for ESP32 itself

void setup(){
Serial.begin(115200);
delay(2000);

(continues on next page)

858 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

Serial.println("Setting soft-AP configuration ... ");
WiFi.disconnect();
WiFi.mode(WIFI_AP);
Serial.println(WiFi.softAPConfig(local_IP, gateway, subnet) ? "Ready" : "Failed!");
Serial.println("Setting soft-AP ... ");
boolean result = WiFi.softAP(ssid_AP, password_AP);
if(result){
Serial.println("Ready");
Serial.println(String("Soft-AP IP address = ") + WiFi.softAPIP().toString());
Serial.println(String("MAC address = ") + WiFi.softAPmacAddress().c_str());

}else{
Serial.println("Failed!");

}
Serial.println("Setup End");

}

void loop() {
}
//**

Test Result
Compile and upload the code to the ESP32. After uploading successfully, we will use a USB cable to power on. Open
the serial monitor and set the baud rate to 115200, then monitor will display as follows:

(If open the serial monitor and set the baud rate to 115200, the information is not displayed, please press the button
RESET of the ESP32)

When observing the printed information of the serial port monitor, turn on the WiFi scanning function of the mobile

7.6. 6. Comprehensive Projects: 859

keyestudio WiKi

phone, you can see the ssid_AP on ESP32, which is dubbed “ESP32_Wifi” in this program code. You can connect to
it either by typing the password “12345678” or by modifying the program code to change its AP name and password.

7.6.19 Project 63WIFI AP+Station Mode

Description
In this project, we are going to learn the AP+Station mode of the ESP32.

Components

Micro USB Cable*1 ESP32*1

Wiring Diagram
Plug the ESP32 mainboard to the USB port of your Raspberry Pi

Component Knowledge

860 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

AP+Station mode
In addition to the AP mode and the Station mode, AP+Station mode can be used at the same time. Turn on the Station
mode of the ESP32, connect it to the router network, and it can communicate with the Internet through the router. Then
turn on the AP mode to create a hotspot network. Other WiFi devices can be connected to the router network or the
hotspot network to communicate with the ESP32.

Test Code
Before the program code runs, you need to modify the ssid_Router, password_Router, ssid_AP and password_AP, as
shown in the box below:

//**
/*
* Filename : WiFi AP+Station
* Description : ESP32 connects to the user's router, turning on an access point
* Auther : http//www.keyestudio.com
*/
#include <WiFi.h>

(continues on next page)

7.6. 6. Comprehensive Projects: 861

keyestudio WiKi

(continued from previous page)

const char *ssid_Router = "ChinaNet-2.4G-0DF0"; //Enter the router name
const char *password_Router = "ChinaNet@233"; //Enter the router password
const char *ssid_AP = "ESP32_Wifi"; //Enter the router name
const char *password_AP = "12345678"; //Enter the router password

void setup(){
Serial.begin(115200);
Serial.println("Setting soft-AP configuration ... ");
WiFi.disconnect();
WiFi.mode(WIFI_AP);
Serial.println("Setting soft-AP ... ");
boolean result = WiFi.softAP(ssid_AP, password_AP);
if(result){
Serial.println("Ready");
Serial.println(String("Soft-AP IP address = ") + WiFi.softAPIP().toString());
Serial.println(String("MAC address = ") + WiFi.softAPmacAddress().c_str());

}else{
Serial.println("Failed!");

}

Serial.println("\nSetting Station configuration ... ");
WiFi.begin(ssid_Router, password_Router);
Serial.println(String("Connecting to ")+ ssid_Router);
while (WiFi.status() != WL_CONNECTED){
delay(500);
Serial.print(".");

}
Serial.println("\nConnected, IP address: ");
Serial.println(WiFi.localIP());
Serial.println("Setup End");

}

void loop() {
}
//**

Test Result
Ensure that the code in the program has been modified correctly, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. Open the serial monitor and set the baud rate to 115200,
then monitor will display as follows: (If open the serial monitor and set the baud rate to 115200, the information is not
displayed, please press the button RESET of the ESP32)

862 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Open the WiFi scanning function of the mobile phone, you can see the ssid_AP.

7.6.20 Project 64: Comprehensive Experiment

Introduction
We did a lot of experiments, and for each one we needed to re-upload the code, so can we achieve different functions
through an experiment? In this experiment, we will use an external button module to achieve different functions.

Components Required

7.6. 6. Comprehensive Projects: 863

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio DIY Purple LED
Module*1

Keyestudio Button Module*1

Keyestudio Poten-
tiometer*1

Keyestudio Obstacle
Avoidance Sensor*1

Keyestudio XHT11 Tempera-
ture and Humidity Sensor *1

Keyestudio ADXL345 Accel-
eration Sensor*1

Keyestudio Line
Tracking Sensor*1

Keyestudio DIY Joy-
stick Module*1

Keyestudio HC-SR04 Ultra-
sonic sensor *1

Keyestudio DIY Common
Cathode RGB Module *1

Micro USB Cable*1 3P Dupont Wire*6 4P Dupont Wire*3 5P Dupont Wire*1

Wiring Diagram

864 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Test Code

//**
/*
* Filename : Comprehensive experiment
* Description : Multiple sensors/modules work together
* Auther : http//www.keyestudio.com
*/
#include "xht11.h"
#include "adxl345_io.h"

//ADXL345 sda-->21,scl-->22
adxl345 adxl345(21, 22);

//xht11 to gpio15
xht11 xht(15);

//rgb is connected to 4,0,2
int ledPins[] = {4, 0, 2}; //define red, green, blue led pins

(continues on next page)

7.6. 6. Comprehensive Projects: 865

keyestudio WiKi

(continued from previous page)

const byte chns[] = {0, 1, 2}; //define the pwm channels
int red, green, blue;

//Rocker module port
int X = 35;
int Y = 34;
int KEY = 32;

//Potentiometer pin is connected to analog port 33
int resPin = 33;

//Trace sensor pin connected to IO port 14
int TrackingPin = 14;

//LED is Connected to GP5
#define PIN_LED 5 // the pin of the LED
#define CHAN 3

//Obstacle avoidance sensor is connected to GP27
int Avoid = 27;

//Ultrasonic sensor port
int Trig = 13;
int Echo = 12;

//Key module port
int button = 23;

int PushCounter = 0;//Store the number of times a key is pressed
int yushu = 0;
unsigned char dht[4] = {0, 0, 0, 0};//Only the first 32 bits of data are received, not␣
→˓the parity bits
bool ir_flag = 1;
float out_X, out_Y, out_Z;

void counter() {
delay(10);
ir_flag = 0;
if (!digitalRead(button)) {
PushCounter++;

}
}

void setup() {
Serial.begin(9600);//Set baud rate to 9600
pinMode(KEY, INPUT);//Button of remote sensing module
ledcSetup(CHAN, 1000, 12);
ledcAttachPin(PIN_LED, CHAN);
pinMode(button, INPUT);//The key module
attachInterrupt(digitalPinToInterrupt(button), counter, FALLING); //External␣

→˓interrupt 0, falling edge fired
pinMode(Avoid, INPUT);//Obstacle avoidance sensor

(continues on next page)

866 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

pinMode(Trig, OUTPUT);//Ultrasonic module
pinMode(Echo, INPUT);
adxl345.Init();
for (int i = 0; i < 3; i++) { //setup the pwm channels,1KHz,8bit
ledcSetup(chns[i], 1000, 8);
ledcAttachPin(ledPins[i], chns[i]);

delay(1000);
}
}

void loop() {
yushu = PushCounter % 8;
if (yushu == 0) { //The remainder is 0
yushu_0(); //rgb displays

} else if (yushu == 1) { //The remainder is 1
yushu_1(); //Displays the high and low levels read by the tracking sensor

} else if (yushu == 2) { //The remainder is 2
yushu_2(); //Display temperature and humidity value

} else if (yushu == 3) { //The remainder is 3
yushu_3(); //Displays the rocker value

}else if (yushu == 4) { //The remainder is 4
yushu_4(); //Display potentiometer ADC value and potentiometer control LED

} else if (yushu == 5) { //The remainder is 5
yushu_5(); //Obstacle avoidance sensor detects obstacles

} else if (yushu == 6) { //The remainder is 6
yushu_6(); //Shows the distance detected by ultrasound

} else if (yushu == 7) { //The remainder is 7
yushu_7(); //ADXL345 triaxial acceleration value

}
}

//RGB
void yushu_0() {

red = random(0, 256);
green = random(0, 256);
blue = random(0, 256);
setColor(red, green, blue);
delay(200);

}
void setColor(byte r, byte g, byte b) {
ledcWrite(chns[0], 255 - r); //Common anode LED, low level to turn on the led.
ledcWrite(chns[1], 255 - g);
ledcWrite(chns[2], 255 - b);

}

void yushu_1() {
int val = digitalRead(TrackingPin);//Read the digital level output by the tracking␣

→˓sensor
Serial.print(val);//Serial port print value
if (val == 0) {//White val is 0 detected
Serial.print(" ");
Serial.println("White");

(continues on next page)

7.6. 6. Comprehensive Projects: 867

keyestudio WiKi

(continued from previous page)

delay(100);
}
else {//Black val is 1 detected

Serial.print(" ");
Serial.println("Black");
delay(100);

}
}

void yushu_2() {
if (xht.receive(dht)) { //Returns true when checked correctly
Serial.print("RH:");
Serial.print(dht[0]); //The integral part of humidity, DHT [1] is the fractional part
Serial.print("% ");
Serial.print("Temp:");
Serial.print(dht[2]); //The integral part of temperature, DHT [3] is the fractional␣

→˓part
Serial.println("C");

} else { //read error
Serial.println("sensor error");

}
delay(1200);

}

void yushu_3() {
int x = analogRead(X);
int y = analogRead(Y);
int key = digitalRead(KEY);
Serial.print("X:");
Serial.print(x);
Serial.print(" Y:");
Serial.print(y);
Serial.print(" KEY:");
Serial.println(key);
delay(100);

}

void yushu_4() {
int adcVal = analogRead(resPin); //read adc
Serial.println(adcVal);
int pwmVal = adcVal; // adcVal re-map to pwmVal
ledcWrite(CHAN, pwmVal); // set the pulse width.
delay(10);

}

void yushu_5() {
int val = digitalRead(Avoid);
if (val == 0) {//Obstruction detected
Serial.println("There are obstacles");

}
else {//No obstructions detected

Serial.println("All going well");

(continues on next page)

868 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

}
delay(100);

}

void yushu_6() {
float distance = checkdistance();
Serial.print("distance:");
Serial.print(distance);
Serial.println("cm");
delay(100);

}

void yushu_7() {
adxl345.readXYZ(&out_X, &out_Y, &out_Z);
Serial.print(out_X);
Serial.print("g ");
Serial.print(out_Y);
Serial.print("g ");
Serial.print(out_Z);
Serial.println("g");
delay(100);

}

float checkdistance() {
digitalWrite(Trig, LOW);
delayMicroseconds(2);
digitalWrite(Trig, HIGH);
delayMicroseconds(10);
digitalWrite(Trig, LOW);
float distance = pulseIn(Echo, HIGH) / 58.00;
delay(10);
return distance;

}
//***

Code Explanation
1). Calculate how many times the button is pressed, divide it by 8, and get the remainder which is 0, 1 2, 3, 4, 5 , 6 and
7. According to different remainders, construct eight unique functions to control the experiment and realize different
functions.

2). Following the instructions, we can add or remove sensors/modules in the wiring, and then change the experimental
function in the code.

Test Result
Connect the wires according to the experimental wiring diagram, compile and upload the code to the ESP32. After
uploading successfully, we will use a USB cable to power on. At the beginning, the number of the button is 0 and
remainder is 0. Open the monitor and set baud rate to 9600.

Press the button, the RGB stops flashing, press once, the remainder is 1. The function of the experiment is to detect
black objects and white objects by a line tracking sensor. If the sensor does not detect an object or detects a black
object, val is 1, and the serial monitor displays the character “1 Black”. When a white object (reflective) is detected,
val is 0 and the serial monitor displays the character “0 White”, the serial monitor will display as follows:

7.6. 6. Comprehensive Projects: 869

keyestudio WiKi

Press a key twice, the time of pressing buttons is 2 and the remainder is 2. Read temperature and humidity values. As
shown below;

Press a key again, the time of pressing buttons is 3 and the remainder is 3. Read digital values at x, y and z axis of the
joystick module. As shown below;

870 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Press the key for the fourth time, the remainder is 4. Then the potentiometer can adjust the PWM value at the GPI05
port to control LED brightness of the purple LED.

Press the key for the fifth time, the remainder is 5. Then the ultrasonic sensor can detect obstacles, as shown below;

7.6. 6. Comprehensive Projects: 871

keyestudio WiKi

Press the key for the sixth time, the remainder is 6. Then the ultrasonic sensor can detect distance away from obstacles,
as shown below;

Press the key for seventh time and the remainder is 7. The monitor will print out the acceleration values.

872 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Press the key for eighth time and the remainder is 0. Then the RGB will flash. If you press keys incessantly, remainders
will change in a loop way. So does functions.

7.6.21 Project 65: WiFi

Description
In the previous experiment, we have learned the WiFi Station mode, WiFi AP mode and WiFi AP+Station mode of
the ESP32. In this project, We will use ESP32’s WiFi Station mode to control the work of multiple sensors/modules
through APP connection with WiFi to achieve the effect of WiFi smart home.

Components

7.6. 6. Comprehensive Projects: 873

keyestudio WiKi

ESP32 Board*1 ESP32 Expansion
Board*1

Keyestudio 130
Motor*1

Keyestudio 5V
Relay Mod-
ule*1

Servo*1

Keyestudio XHT11 Temperature
and Humidity Sensor*1compatible
DHT11)

Keyestudio HC-
SR04 Ultrasonic
Sensor*1

3P Dupont*2 4P Dupont*2 Smart
Phone/PC*1

Battery Holder*1 Battery (provide for
yourself)*6

Micro USB Ca-
ble*1

Wiring Diagram

874 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Install APP
(1) Android device (mobile phone/PC) APP:

A. We provide the Android APP installation package.

B. Now transfer the keyes wifi.apk file in the Android APP installation package to the Android phone or PC, click
the keyes wifi.apk file to enter the installation page, click “ALLOW” key, and then click “INSTALL” button. After
installation, click “OPEN” button to enter the APP interface.

7.6. 6. Comprehensive Projects: 875

keyestudio WiKi

876 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

7.6. 6. Comprehensive Projects: 877

keyestudio WiKi

878 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(2) IOS device (mobile phone /iPad) APP:

A. Open App Store

B. Enter keyes link in the search box and click search, the download interface appears. Click “ ” to download and
install the APP of the keyes link. The following operations are similar to those of Android system. You can refer to the
steps of Android system above for operation.

Test Code

//**
/*
* Filename : WiFi Smart Home.
* Description : WiFi APP controls Multiple sensors/modules work to achieve the effect␣
→˓of WiFi smart home.
* Auther : http//www.keyestudio.com
*/
#include <Arduino.h>
#include <WiFi.h>
#include <ESPmDNS.h>
#include <WiFiClient.h>

#include "xht11.h"
//gpio15
xht11 xht(27);
unsigned char dht[4] = {0, 0, 0, 0};

(continues on next page)

7.6. 6. Comprehensive Projects: 879

keyestudio WiKi

(continued from previous page)

#include <ESP32Servo.h>
Servo myservo;
int servoPin = 21;
#define Relay 4
#define IN1 2 //IN1 corresponds to IN+
#define IN2 15 //IN2 corresponds to IN-
#define trigPin 12
#define echoPin 13

int distance1;
String dis_str;
int ip_flag = 1;
int ultra_state = 1;
int temp_state = 1;
int humidity_state = 1;

String item = "0";
const char* ssid = "ChinaNet-2.4G-0DF0"; //the name of user's wifi
const char* password = "ChinaNet@233"; //the password of user's wifi
WiFiServer server(80);
String unoData = "";

void setup() {
Serial.begin(115200);
pinMode(Relay, OUTPUT);
myservo.setPeriodHertz(50);
myservo.attach(servoPin, 500, 2500);
pinMode(IN1, OUTPUT);
pinMode(IN2, OUTPUT);

WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {

delay(500);
Serial.print(".");

}
Serial.println("");
Serial.print("Connected to ");
Serial.println(ssid);
Serial.print("IP address: ");
Serial.println(WiFi.localIP());
server.begin();
Serial.println("TCP server started");
MDNS.addService("http", "tcp", 80);

digitalWrite(IN1, LOW);
digitalWrite(IN2, LOW);
digitalWrite(Relay, LOW);
pinMode(trigPin, OUTPUT);
pinMode(echoPin, INPUT);

}

(continues on next page)

880 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

void loop() {
WiFiClient client = server.available();
if (!client) {

return;
}
while(client.connected() && !client.available()){

delay(1);
}
String req = client.readStringUntil('\r');
int addr_start = req.indexOf(' ');
int addr_end = req.indexOf(' ', addr_start + 1);
if (addr_start == -1 || addr_end == -1) {

Serial.print("Invalid request: ");
Serial.println(req);
return;

}
req = req.substring(addr_start + 1, addr_end);
item=req;
Serial.println(item);
String s;
if (req == "/")
{

IPAddress ip = WiFi.localIP();
String ipStr = String(ip[0]) + '.' + String(ip[1]) + '.' + String(ip[2]) + '.' +␣

→˓String(ip[3]);
s = "HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n\r\n<!DOCTYPE HTML>\r\n<html>

→˓Hello from ESP32 at ";
s += ipStr;
s += "</html>\r\n\r\n";
Serial.println("Sending 200");
client.println(s);

}
else if(req == "/btn/0")
{
Serial.write('a');
client.println(F("turn on the relay"));
digitalWrite(Relay, HIGH);

}
else if(req == "/btn/1")
{
Serial.write('b');
client.println(F("turn off the relay"));
digitalWrite(Relay, LOW);

}
else if(req == "/btn/2")
{
Serial.write('c');
client.println("Bring the steering gear over 180 degrees");
myservo.write(180);
delay(200);

}
else if(req == "/btn/3")

(continues on next page)

7.6. 6. Comprehensive Projects: 881

keyestudio WiKi

(continued from previous page)

{
Serial.write('d');
client.println("Bring the steering gear over 0 degrees");
myservo.write(0);
delay(200);

}
else if(req == "/btn/4")
{
Serial.write('e');
client.println("esp32 already turn on the fans");
digitalWrite(IN1, LOW);
digitalWrite(IN2, HIGH);

}
else if(req == "/btn/5")
{
Serial.write('f');
client.println("esp32 already turn off the fans");
digitalWrite(IN1, LOW);
digitalWrite(IN2, LOW);

}
else if(req == "/btn/6")
{
Serial.write('g');
while(Serial.available() > 0)
{
unoData = Serial.readStringUntil('#');
client.println("Data");

}
while(ultra_state>0)

{
Serial.print("Distance = ");
Serial.print(checkdistance());
Serial.println("#");
Serial1.print("Distance = ");
Serial1.print(checkdistance());
Serial1.println("#");
int t_val1 = checkdistance();
client.print("Distance(cm) = ");
client.println(t_val1);
ultra_state = 0;

}
}
else if(req == "/btn/7")
{
Serial.write('h');
client.println("turn off the ultrasonic");
ultra_state = 1;

}
else if(req == "/btn/8")
{
Serial.write('i');
while(Serial.available() > 0)

(continues on next page)

882 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

(continued from previous page)

{
unoData = Serial.readStringUntil('#');
client.println(unoData);
}
while(temp_state>0)
{
if (xht.receive(dht)) {

Serial.print("Temperature = ");
Serial.print(dht[2],1);
Serial.println("#");
Serial1.print("Temperature = ");
Serial1.print(dht[2],1);
Serial1.println("#");
int t_val2 = dht[2];
client.print("Temperature(℃) = ");
client.println(t_val2);

}
temp_state = 0;

}
}
else if(req == "/btn/9")
{
Serial.write('j');
client.println("turn off the temperature");
temp_state = 1;

}
else if(req == "/btn/10")
{
Serial.write('k');
while(Serial.available() > 0)
{
unoData = Serial.readStringUntil('#');
client.println(unoData);

}
while(humidity_state > 0)
{
if (xht.receive(dht)) {
Serial.print("Humidity = ");
Serial.print(dht[0],1);
Serial.println("#");
Serial1.print("Humidity = ");
Serial1.print(dht[0],1);
Serial1.println("#");
int t_val3 = dht[0];
client.print("Humidity(%) = ");
client.println(t_val3);

}
humidity_state = 0;

}
}
else if(req == "/btn/11")
{

(continues on next page)

7.6. 6. Comprehensive Projects: 883

keyestudio WiKi

(continued from previous page)

Serial.write('l');
client.println("turn off the humidity");
humidity_state = 1;
}

//client.print(s);
client.stop();

}

int checkdistance() {
digitalWrite(12, LOW);
delayMicroseconds(2);
digitalWrite(12, HIGH);
delayMicroseconds(10);
digitalWrite(12, LOW);
int distance = pulseIn(13, HIGH) / 58;

delay(10);
return distance;

}
//**

Note: You need to

change the Wifi name and default Wifi password of the experimental code to your own Wifi name and Wifi password.

Test Result
After the code has been modified correctly, connect the external power supply and power on. Switch the DIP switch
ON the ESP32 expansion board to the ON end, compile and upload the code to the ESP32 mainboard.If uploading the

code is not successful, press the Boot button on the ESP32 mainboard with your hand after click , release it when
the upload progress percentage appears.)

Open the serial monitor and set baud rate to 115200, then the monitor prints the detected WiFi IP address. (If open the
serial monitor and set the baud rate to 115200, the information is not displayed, please press the button RESET of the
ESP32)

884 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

Open WiFi APP, enter the detected WIFI IP address in the text box in front of the WIFI button (for example, the IP
address detected by the serial monitor above is 192.168.0.156).

Next, click the WIFI button to connect to WIFI, at the same time, the corresponding WiFi IP address will be displayed in
the text box :“Hello from ESP32 at 192.168.0.156”, then the APP has connected to WiFi. (WiFi IP address sometimes
changes, if the original IP address can not use, you need to re-check it.)

After the APP is connected to WiFi, the following operations are performed:

7.6. 6. Comprehensive Projects: 885

keyestudio WiKi

1). Click button, the relay will be opened, the APP will display and

the indicator lights up on the module. Click again, the relay will be closed , the APP will display

and the indicator on the module is off.

2). Click buttonthe servo rotates 180°the APP will display againthe APP will display

the servo rotates 0°.

3). Click buttonthe motorwith small fan bladesrotatesthe APP will display againclose

the motorthe APP will display

4). Click buttonthe ultrasonic sensor detects the distance, put an object in front of the ultrasonic sensor,

the APP will display different distances show different numbers, the distance between

the object and the ultrasonic sensor is 14cmclick again, turn off the sensor, the APP will display

.

5). Click buttonthe temperature and humidity sensor measures the temperature in the environ-

ment, the APP will display different temperatures show different temperature

valuesthe ambient temperature is 28 ° C., click again, turn off the sensorthe APP will display

.

6). Click buttonthe temperature and humidity sensor measures the humidity in the en-

vironment,the APP will display different humiditys show different humiditys

886 Chapter 7. Arduino(Raspberry-Pi) tutorial

keyestudio WiKi

values, the ambient humidity is 52%click againturn off the sensor, the APP will display

.

7.6. 6. Comprehensive Projects: 887

	1. Description
	2. Kit list
	3. Tutorials
	ESP32 Mainboard and ESP32 shield
	1. Keyestudio ESP32 Mainboard
	1.1. Introduction:
	1.2. Specifications:
	1.3. Pin out:
	1.4. Components:

	2. Keyestudio ESP32-IO shield
	2.1. Overview:
	2.2. Specifications:
	2.3. Pins and Components:

	Python tutorial
	1. Preparation for Python(Windows):
	1. Download and Install Thonny：
	1.1. Download Thonny：
	1.2. Install Thonny (Windows System):
	1.3. Basic Setting：

	2. Install the CP2102 driver：
	3. Burn Micropython firmware:
	4. Test Code:
	Run the test code(online):
	Run the test code(offline):

	5. Thonny Common Operation:

	2. Single Sensor/Experiment Projects：
	Project 1: Hello World
	Project 2: Lighting up LED
	Project 3: Traffic Lights Module
	Project 4: Laser Sensor
	Project 5: Breathing LED
	Project 6: RGB Module
	Project 7: Button Sensor
	Project 8: Capacitive Sensor
	Project 9: Obstacle Avoidance Sensor
	Project 10: Line Tracking Sensor
	Project 11: Photo Interrupter
	Project 12: Tilt Module
	Project 13: Collision Sensor
	Project 14: Hall Sensor
	Project 15: Reed Switch Module
	Project 16: PIR Motion Sensor
	Project 17: Active Buzzer
	Project 18: 8002b Audio Power Amplifier
	Project 19: 130 Motor
	Project 20: Potentiometer
	Project 21: Steam Sensor
	Project 22: Sound Sensor
	Project 23: Photoresistor
	Project 24: NTC-MF52AT Thermistor
	Project 25: Thin-film Pressure Sensor
	Project 26: Flame Sensor
	Project 27: MQ-2 Gas Sensor
	Project 28: MQ-3 Alcohol Sensor
	Project 29: Five-key AD Button Module
	Project 30: Joystick Module
	Project 31: Relay Module
	Project 32: SK6812 RGB Module
	Project 33: Rotary Encoder
	Project 34: Servo Control
	Project 35: Ultrasonic Sensor
	Project 36: IR Receiver Module
	Project 37: DS18B20 Temperature Sensor
	Project 38: XHT11 Temperature and Humidity Sensor
	Project 39: DS1307 Clock Module
	Project 40: ADXL345 Acceleration Sensor
	Project 41: TM1650 4-Digit Tube Display
	Project 42: HT16K33_8X8 Dot Matrix Module
	Project 43: LCD_128X32_DOT Module
	Project 44: RFID Module

	3. Comprehensive Experiments:
	Project 45: Button-controlled LED
	Project 46: Alarm Experiment
	Project 47: Intrusion Detection
	Project 48: Extinguishing Robot
	Project 49: Rotary Encoder control RGB
	Project 50: Rotary Potentiometer
	Project 51: Smart Windows
	Project 52: Sound Activated Light
	Project 53: Fire Alarm
	Project 54: Smoke Alarm
	Project 55: Alcohol Sensor
	Project 56: Ultrasonic Radar
	Project 57: IR Remote Control
	Project 58: Heat Dissipation Device
	Project 59: Intelligent Entrance Guard System
	Project 60：WIFI Station Mode
	Project 61：WIFI AP Mode
	Project 62：WIFI AP+Station Mode
	Project 63: Comprehensive Experiment

	Arduino tutorial
	1. Get started with Arduino C:
	1. Windows System：
	1.1 Installing Arduino IDE:
	1.2 Install a driver on Windows：
	1.3. Install the ESP32 on Arduino IDE：
	1.4. Arduino IDE Setting:

	2. Mac System:
	2.1. Download Arduino IDE:
	2.2. How to install the CP2102 driver：

	3. How to Add Libraries? :
	3.1. What are Libraries ? :
	3.2. How to Install a Library ? :

	2. Basic Projects：
	Project 1: Hello World
	Project 2: Lighting up LED
	Project 3: Traffic Lights Module
	Project 4: Laser Sensor
	Project 5: Breathing LED
	Project 6: RGB Module
	Project 7: Button Sensor
	Project 8: Capacitive Sensor
	Project 9: Obstacle Avoidance Sensor
	Project 10: Line Tracking Sensor
	Project 11: Photo Interrupter
	Project 12: Tilt Module
	Project 13: Collision Sensor
	Project 14: Hall Sensor
	Project 15: Reed Switch Module
	Project 16: PIR Motion Sensor
	Project 17: Active Buzzer
	Project 18: 8002b Audio Power Amplifier
	Project 19: 130 Motor
	Project 20: Potentiometer
	Project 21: Steam Sensor
	Project 22: Sound Sensor
	Project 23: Photoresistor
	Project 24: NTC-MF52AT Thermistor
	Project 25: Thin-film Pressure Sensor
	Project 26: Flame Sensor
	Project 27: MQ-2 Gas Sensor
	Project 28: MQ-3 Alcohol Sensor
	Project 29: Five-key AD Button Module
	Project 30: Joystick Module
	Project 31: Relay Module
	Project 32: SK6812 RGB Module
	Project 33: Rotary Encoder
	Project 34: Servo Control
	Project 35: Ultrasonic Sensor
	Project 36: IR Receiver Module
	Project 37: DS18B20 Temperature Sensor
	Project 38: XHT11 Temperature and Humidity Sensor
	Project 39: DS1307 Clock Module
	Project 40: ADXL345 Acceleration Sensor
	Project 41: TM1650 4-Digit Tube Display
	Project 42: HT16K33_8X8 Dot Matrix Module
	Project 43: LCD_128X32_DOT Module
	Project 44: RFID Module

	3. Comprehensive Experiments:
	Project 45: Button-controlled LED
	Project 46: Alarm Experiment
	Project 47: Intrusion Detection
	Project 48: Extinguishing Robot
	Project 49: Rotary Encoder control RGB
	Project 50: Rotary Potentiometer
	Project 51: Smart Windows
	Project 52: Sound Activated Light
	Project 53: Fire Alarm
	Project 54: Smoke Alarm
	Project 55: Alcohol Sensor
	Project 56: Ultrasonic Radar
	Project 57: IR Remote Control
	Project 58: Heat Dissipation Device
	Project 59: Intelligent Entrance Guard System
	Project 60：Bluetooth
	Project 60.1：Classic Bluetooth
	Project 60.2：Bluetooth Control LED

	Project 61：WIFI Station Mode
	Project 62：WIFI AP Mode
	Project 63：WIFI AP+Station Mode
	Project 64: Comprehensive Experiment
	Project 65: WiFi

	Arduino(Raspberry-Pi) tutorial
	1. Install Raspberry Pi OS System：
	1.1. Hardware Tool：
	1.2. Software Tool：
	Windows System：
	(1) Install putty:
	(2) SSH Remote Login software -WinSCP
	(3) SD Card Formatter
	(4) Burn Win32DiskImager
	(5) WNetWatcher
	(6) Raspberry Pi Imager

	1.3. Install Raspberry Pi OS on Raspberry Pi 4B:
	(1) Burn System
	(2) Log in system
	(3) Remote Login
	(4) Check ip and mac address
	(5) Fix ip address of Raspberry Pi
	(6) Log in Desktop on Raspberry Pi Wirelessly
	(7) Open the remote desktop connection on Windows

	2. Preparations for C language:
	2.1. Hardware：
	2.2. Copy Example Code Folder to Raspberry Pi:

	3. Linux System（Raspberry Pi）:
	3.1. Download and install Arduino IDE
	3.2. Install the ESP32 on Arduino IDE
	3.3. Arduino IDE Setting

	4. How to Add Libraries? :
	4.1. What are Libraries ?:
	4.2. How to Install a Library ?:

	5. Basic Projects：
	Project 1: Hello World
	Project 2: Lighting up LED
	Project 3: Traffic Lights Module
	Project 4: Laser Sensor
	Project 5: Breathing LED
	Project 6: RGB Module
	Project 7: Button Sensor
	Project 8: Capacitive Sensor
	Project 9: Obstacle Avoidance Sensor
	Project 10: Line Tracking Sensor
	Project 11: Photo Interrupter
	Project 12: Tilt Module
	Project 13: Collision Sensor
	Project 14: Hall Sensor
	Project 15: Reed Switch Module
	Project 16: PIR Motion Sensor
	Project 17: Active Buzzer
	Project 18: 8002b Audio Power Amplifier
	Project 19: 130 Motor
	Project 20: Potentiometer
	Project 21: Steam Sensor
	Project 22: Sound Sensor
	Project 23: Photoresistor
	Project 24: NTC-MF52AT Thermistor
	Project 25: Thin-film Pressure Sensor
	Project 26: Flame Sensor
	Project 27: MQ-2 Gas Sensor
	Project 28: MQ-3 Alcohol Sensor
	Project 29: Five-key AD Button Module
	Project 30: Joystick Module
	Project 31: Relay Module
	Project 32: SK6812 RGB Module
	Project 33: Rotary Encoder
	Project 34: Servo Control
	Project 35: Ultrasonic Sensor
	Project 36: IR Receiver Module
	Project 37: DS18B20 Temperature Sensor
	Project 38: XHT11 Temperature and Humidity Sensor
	Project 39: DS1307 Clock Module
	Project 40: ADXL345 Acceleration Sensor
	Project 41: TM1650 4-Digit Tube Display
	Project 42: HT16K33_8X8 Dot Matrix Module
	Project 43: LCD_128X32_DOT Module
	Project 44: RFID Module

	6. Comprehensive Projects:
	Project 45: Button-controlled LED
	Project 46: Alarm Experiment
	Project 47: Intrusion Detection
	Project 48: Extinguishing Robot
	Project 49: Rotary Encoder control RGB
	Project 50: Rotary Potentiometer
	Project 51: Smart Windows
	Project 52: Sound Activated Light
	Project 53: Fire Alarm
	Project 54: Smoke Alarm
	Project 55: Alcohol Sensor
	Project 56: Ultrasonic Radar
	Project 57: IR Remote Control
	Project 58: Heat Dissipation Device
	Project 59: Intelligent Entrance Guard System
	Project 60：Bluetooth
	Project 60.1：Classic Bluetooth
	Project 60.2：Bluetooth Control LED

	Project 61：WIFI Station Mode
	Project 62：WIFI AP Mode
	Project 63：WIFI AP+Station Mode
	Project 64: Comprehensive Experiment
	Project 65: WiFi

